
Direct Mining of Discriminative Patterns for Classifying
Uncertain Data

Chuancong Gao, Jianyong Wang
Department of Computer Science and Technology

Tsinghua National Laboratory for Information Science and Technology
Tsinghua University, Beijing 100084, China

gaocc07@mails.tsinghua.edu.cn, jianyong@tsinghua.edu.cn

ABSTRACT
Classification is one of the most essential tasks in data mining. Un-
like other methods, associative classification tries to find all the
frequent patterns existing in the input categorical data satisfying a
user-specified minimum support and/or other discrimination mea-
sures like minimum confidence or information-gain. Those pat-
terns are used later either as rules for rule-based classifier or train-
ing features for support vector machine (SVM) classifier, after a
feature selection procedure which usually tries to cover as many as
the input instances with the most discriminative patterns in various
manners. Several algorithms have also been proposed to mine the
most discriminative patterns directly without costly feature selec-
tion. Previous empirical results show that associative classification
could provide better classification accuracy over many datasets.

Recently, many studies have been conducted on uncertain data,
where fields of uncertain attributes no longer have certain values.
Instead probability distribution functions are adopted to represent
the possible values and their corresponding probabilities. The un-
certainty is usually caused by noise, measurement limits, or other
possible factors. Several algorithms have been proposed to solve
the classification problem on uncertain data recently, for example
by extending traditional rule-based classifier and decision tree to
work on uncertain data. In this paper, we propose a novel algo-
rithm uHARMONY which mines discriminative patterns directly
and effectively from uncertain data as classification features/rules,
to help train either SVM or rule-based classifier. Since patterns are
discovered directly from the input database, feature selection usu-
ally taking a great amount of time could be avoided completely.
Effective method for computation of expected confidence of the
mined patterns used as the measurement of discrimination is also
proposed. Empirical results show that using SVM classifier our
algorithm uHARMONY outperforms the state-of-the-art uncertain
data classification algorithms significantly with 4% to 10% im-
provements on average in accuracy on 30 categorical datasets under
varying uncertain degree and uncertain attribute number.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’10, July 25–28, 2010, Washington, DC, USA.
Copyright 2010 ACM 978-1-4503-0055-110/07 ...$10.00.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database applications—Data Min-
ing

General Terms
Algorithm, Experimentation

Keywords
Associative Classification, Uncertain Data, Frequent Pattern Min-
ing, Expected Confidence

Code and Datasets
All the code and datasets are available at http://dbgroup.
cs.tsinghua.edu.cn/chuancong/uharmony/.

1. INTRODUCTION
As one of the most essential tasks in data mining and machine

learning area, classification has been studied for many years. Many
effective models and algorithms have been proposed to solve the
problem in different aspects, including decision tree, rule-based
classifier, support vector machine, etc.

Unlike some traditional rule-based algorithms like Ripper [7] or
FOIL [19], associative classification tries to mine the complete set
of frequent patterns from the input dataset, given the user-specified
minimum support threshold and/or discriminative measurements
like minimum confidence threshold. Sequential covering technol-
ogy is further employed to select the most discriminative patterns
while covering most input training instances. A test instance is
classified later using classifier trained based on the mined patterns.
CBA [15] is one of the most classical associative classification al-
gorithms. Empirical results show that associative classification al-
gorithm could provide better classification accuracy than other al-
gorithms on categorical datasets. However, this approach takes a
great amount of running time in both pattern mining and feature se-
lection, since most of the mined frequent patterns are not the most
discriminative ones and will be dropped later.

To improve the efficiency of associative classification, several al-
gorithms have been proposed in recent years to try to mine the most
discriminative patterns directly during the pattern mining step. Dif-
ferent discriminative measures and different instance covering tech-
nologies have also been devised. One of the most typical algo-
rithms is HARMONY [21] which uses confidence to evaluate the
discrimination of patterns. It employs a so-called instance-centric
framework to find one most discriminative pattern for each instance.
Effective pruning methods have also been proposed to enhance the

http://dbgroup.cs.tsinghua.edu.cn/chuancong/uharmony/
http://dbgroup.cs.tsinghua.edu.cn/chuancong/uharmony/

algorithm efficiency. To classify a test instance, a rule-based clas-
sifier is built based on the mined patterns. From then on, several
other algorithms [4, 9] mining pattern directly have also been pro-
posed. The main differences of these algorithms in comparison
with HARMONY include the replacement of confidence with in-
formation gain or information gain ratio as the pattern quality mea-
sure, the adoption of SVM model, and more advanced covering
technologies such as the one using decision tree to partition data.
Among these changes, the adoption of SVM model contributes the
most in improving the classification accuracy.

Recently, more and more research has been conducted on uncer-
tain data mining to solve the uncertainty usually caused by noise,
measurement precisions, etc. Several algorithms have already been
proposed to solve the frequent itemset mining problem where each
item has a probability to appear, using either expected support [6]
or frequentness probability [2] to measure the pattern frequentness.
Classification for uncertain data has also been studied recently. For
uncertain data classification, the values of the uncertain attributes
are now represented using a probabilistic distribution function, for
uncertain numeric attribute or uncertain categorical attribute. Sev-
eral classical algorithms like C4.5 and Ripper have been extended
to process uncertain attributes [17, 20, 16]. Some of them try to
convert the uncertain attributes into certain ones by discretization
using sample points, while others adopt probabilistic cardinalities
of entropy, information gain and information gain ratio.

In this paper, we propose a new algorithm called uHARMONY
to solve the problem of classifying uncertain categorical data. The
algorithm adopts the same framework as algorithm HARMONY.
Expected support is adopted to represent pattern frequentness, while
expected confidence is employed to represent the discrimination
of the mined patterns. We also devise a novel method to calcu-
late the expected confidence efficiently. A new instance covering
strategy has been devised to try to ensure that the instances are cov-
ered with a probability higher than a user-specified cover threshold.
Evaluation on 30 public datasets with different number of uncertain
attributes and different uncertain degrees (which is defined as the
probability the attribute takes values other than the original single
value) shows that our algorithm outperforms two state-of-the-art al-
gorithms significantly with 4% to 10% improvements in accuracy
on average while using SVM as the classification model.

Our contributions could be summarized as follows.
• We devise a new associative classification algorithm mining

the most discriminative patterns directly on uncertain data.
To our best knowledge, this is the first associative classifica-
tion algorithm for classifying uncertain data.
• We adopt the expected confidence as the measurement of dis-

criminative degree, instead of other probabilistic cardinal-
ities without reasonable theoretical explanations. A novel
upper-bound based approach is also proposed to speedup the
calculation of expected confidence.
• Unlike covering instance with only one pattern having the

corresponding maximum confidence in HARMONY, we de-
vise a novel instance covering strategy to assure the probabil-
ity of each training instance covered by at least one pattern is
higher than a user-specified threshold. Evaluation shows that
this technology could improve the accuracy significantly.
• We conducted a comprehensive experiment using 30 public

datasets under varying uncertain parameters. The empirical
results validate that our algorithm outperforms two state-of-
the-art algorithms significantly with 4% to 10% improve-
ments in accuracy on average.

For the rest of this paper, we first introduce the related work in
Section 2. Preliminaries are described in Section 3. The compu-

tation of expected confidence is provided in Section 4. Algorithm
details are discussed in Section 5. The evaluation part is presented
in Section 6. Our paper concludes in Section 7.

2. RELATED WORK
Various algorithms have been proposed for categorical data clas-

sification. Most of them could be classified into two types – the
traditional rule-induction (or decision tree) based methods and the
association-based methods. The rule-induction-based classifiers such
as Ripper [7], C4.5 [18], FOIL [19], and CPAR [22] use heuris-
tics like information-gain or gini index to grow the current rule.
Sequential covering paradigm may also be adopted for speedup.
While for association-based classifiers, efficient associative rule
mining algorithms are first applied to find the complete set of candi-
date rules. A set of rules are selected later based on several covering
paradigms and discrimination heuristics. Some typical examples
include CBA [15] and CMAR [14]. [3] proposes a method recently
using the discovered rules as SVM training features and achieves
higher accuracy. [11] includes an application on associative classi-
fication using frequent itemset generators mined on stream data.

In recent years, several studies have been conducted on how
to mine associative rules directly and effectively from the input
database without costly feature selection step. HARMONY [21]
is an instance-centric algorithm which mines directly for each in-
stance a covering rule with the highest confidence. [8] proposes a
method to discover top-k covering rules for the input gene expres-
sion data. Extended from their previous study in [3], the authors of
[4] further introduced a feature-centered mining approach to gen-
erate discriminative patterns sequentially by incrementally elimi-
nating training instances on a progressively shrinking FP-Tree. [9]
also proposes a method to solve the same problem. Unlike DDP-
Mine [4], it builds a decision tree to partition the data onto different
nodes. Then at each node, one discriminative pattern is discovered
directly to further divide its covering examples into purer subsets.

Uncertain data mining attracts much attention recently. Several
research efforts focus on frequent itemset mining. [6] proposes the
U-Apriori algorithm using expected support to find all the frequent
itemsets on uncertain data. Later a probabilistic filter for earlier
candidate pruning was further devised in [5]. The UF-Growth al-
gorithm was proposed in [13]. Besides using expected support like
U-Apriori, UF-Growth uses the FP-Tree [12] approach to avoid ex-
pensive candidate generation. [1] discusses the frequent pattern
mining for uncertain datasets and shows how to extend a broad
classes of algorithms to uncertain data. Trying to solve the inac-
curacy in measuring frequentness using expected support, [2] pro-
poses to use frequentness probability under possible worlds seman-
tics and devises an efficient computing technology.

In recent years, several classification algorithms have been pro-
posed for uncertain data too. [20] proposes to use decision tree for
classifying uncertain numeric data where the value uncertainty is
represented by multiple values forming a probability distribution
function. Simultaneously uRule [17] tries to solve the problem us-
ing rule-based classifier extended from classical algorithm Ripper
[7]. The authors also extended the entropy and information gain
measure for uncertain data. Extending from classical decision tree
algorithm C4.5 [18] and adopting the same discrimination measure
of uRule, DTU [16] achieves close accuracy to uRule while runs
much faster in most cases. Both uRule and DTU support uncer-
tain numeric data and uncertain categorical data. However, the new
measurements of probabilistic entropy and probabilistic informa-
tion gain are only probabilistic cardinalities, which means that they
do not have reasonable theoretical explanations.

3. PRELIMINARIES

3.1 The Uncertain Data Model
We adopt the same uncertain model of categorical data used in

both [17] and [16]. For each input dataset, it is composed of a
set of attributes A. For each attribute Ai ∈ A(1 ≤ i ≤ |A|), if
it contains values which are uncertain it is called an uncertain at-
tribute and is denoted by Au

i , or else a certain attribute which is
denoted by Ac

i . The set of all uncertain and the set of all certain
attributes are denoted by Au and Ac, respectively. The value of at-
tribute Ai in the jth instance is denoted by ai,j . For an uncertain
attribute Au

i , its value in each instance is represented as a proba-
bility distribution function pdfi,j which records the possibility for
each possible value in the categorical domain domAi for Ai, in-
stead of a single value for a certain attribute. Given the domain of
Ai, domAi = {v1, · · · , vk, · · · , vn}, pdfi,j could be represented
using a probability vector Pi,j = {p1, · · · , pk, · · · , pn} such that
P (ai,j = vk) = pk and

∑n
k=1 pk = 1. There is also a class label

attribute C containing class label for each instance. cj is used to
denote the class label of the jth instance. In this paper, the class
label attribute C is not included in the set of attributes A.

Table 1 provides a toy example of an uncertain database about
computer buying evaluation with one uncertain attribute on quality.

Evaluation Price Looking Tech. Spec. Quality
Unacceptable + - / {-: 0.8, /: 0.1, +: 0.1}
Acceptable / - / {-: 0.1, /: 0.8, +: 0.1}

Good - + / {-: 0.1, /: 0.8, +: 0.1}
Very Good / + + {-: 0.1, /: 0.1, +: 0.8}

Table 1: Example of an Uncertain Database (+: Good, /: Medium,
-: Bad)

3.2 Frequent Itemset Mining
Since the foundation of associative classification is frequent pat-

tern mining, we also introduce the definitions and notations related
to frequent pattern mining. Specifically, we discuss frequent item-
set mining on uncertain categorical data. Given a set of items I 1

in input database input_db, an itemset x is defined as a subset of
I. A transaction tj is defined as the set of values on each attribute
Ai in the jth instance Ai,j and a class label cj . The complete set
of transactions in any database db ⊆ input_db is denoted by T db

or simply T when db is clear in context.
Traditionally an itemset x is said to be supported by a trans-

action ti if x ⊆ ti. |{ti|ti ⊆ T ∧ x ⊆ ti}| is called the abso-
lute support of x with respect to db, denoted by supdbx or supx
in clear context, while supx/

∣∣T input_db
∣∣ is called the relative sup-

port. When it is clear, absolute support and relative support could
be used interchangeably. We also use supdbx

c
or supxc to denote

|{ti|ci = c ∧ ti ⊆ T ∧ x ⊆ ti}|, the support value of x under class
c. x is said to be frequent iff supx ≥ supmin, where supmin is a
user specified minimum (absolute/relative) support threshold.

While on uncertain database, there exists a probability of x ⊆ ti
when x contains at least one item of uncertain attribute, and the sup-
port of x is no longer a single value but a probability distribution
function instead. In this paper we use expected support to represent
the support value on uncertain data. The expected support E(supx)
of itemset x is defined as E(supx) =

∑
t∈T P (x ⊆ t). For exam-

ple, in Table 1 we have an itemset {/@Price, +@Quality} with

1Note that items appeared in different attributes are different even if they
are identical literally.

expected support of 0.1 + 0.8 = 0.9. E(supx
c) could be defined

similarly. The concept of frequent itemset is the same as on certain
database. When the context is clear E(supx) could also be denoted
by supx for unified representation.

Finally, we summarize the notations used mostly through this
paper in Table 2.

Notation Description
A (Ac / Au) Set of (certain / uncertain) attributes
Ai (Ac

i / Au
i) ith attribute in A (which is certain / uncertain)

ai,j Value of Ai in the jth instance
C Class attribute
cj Class label in the jth instance

domAi
Set of possible values on Ai

I Set of Items on the whole input database
T Set of transactions in current database
tj jth transaction t in T

supx (supxc) (Expected) Support of itemset x (on class c)
supmin Minimum support threshold
confc

x (Expected) Confidence of itemset x on class c
Ei(confx

c / supxc) Part of Expect on confx
c / supxc when

supx = i
Ei,n(confx

c / supxc) Part of Expect on confx
c / supxc on the first

n transactions when supx = i
boundi(confx

c) ith upper bound on confx
c

IS Set of discovered candidate itemsets through
the algorithm

Ux@y With y uncertain attribute(s) under uncertain
degree of x%

Table 2: Summary of Notations

4. EXPECTED CONFIDENCE
In our algorithm uHARMONY we use expected confidence of

a discovered itemset to measure its discrimination. Unlike proba-
bilistic cardinalities like probabilistic entropy and probabilistic in-
formation gain used in [17] and [16] which may be not precise
and are lack of theoretical explanations and statistical meanings,
expected confidence is guarantied to be statistical meaningful in
theory while providing relatively accurate measure of discrimina-
tion. However, the calculation of expected confidence is non-trivial
and requires careful consideration. On uncertain database expected
confidence E(confx

c) = E(supx
c/supx) of itemset x on class

c is not simply equal to E(supx
c)/E(supx), although we have

confx
c = supx

c/supx on certain database. For example in Ta-
ble 1, for itemset x = {−@Looking,−@Quality} and class
c = Unacceptable we have E(confx

c) = 1.0×(0.8×0.9)+0.5×
(0.8×0.1) = 0.76 while E(supx

c)/E(supx) = 0.8/(0.8+0.1)≈
0.89. Obviously, E(confx

c) is not equal to E(supx
c)/E(supx).

4.1 Definition of Expected Confidence
DEFINITION 1. Given a set of transactions T and the set of

possible worlds W with respect to T , the expected confidence of an
itemset x on class c is

E(confx
c) =

∑
wi∈W

confx,wi

c×P (wi) =
∑

wi∈W

supx,wi
c

supx,wi

×P (wi)

where P (wi) is the probability of world wi. confx,wi
c is the

respected confidence of x on class c in world wi, while supx,wi

(supx,wi
c) is the respected support of x (on class c) in world wi.

However, this formula could not be used directly to calculate the
expected confidence, due to the extremely large number of possi-
ble world |W |. Actually, there are O((1 +

∏
Ak∈Au |domAk |)

|T |)

possible worlds, where 1 stands for not taking the transaction while∏
Ak∈Au |domAk | stands for combinations of values in uncertain

attributes when taking the transaction. Hence, more efficient com-
putation technology is needed.

4.2 Efficient Computation of Expected Confi-
dence

In order to devise an efficient method for computing expected
confidence, we first introduce a lemma.

LEMMA 1. Since 0 ≤ supx
c ≤ supx ≤ |T |, we have:

E(confx
c) =

∑
wi∈W

confx,wi

c × P (wi)

=

|T |∑
i=0

i∑
j=0

j

i
× P (supx = i ∧ supx

c = j)

=

|T |∑
i=0

Ei(supx
c)

i
=

|T |∑
i=0

Ei(confx
c)

, where Ei(supx
c) and Ei(confx

c) denote the part of expected
support and confidence of itemset x on class c when supx = i.

Given 0 ≤ n ≤ |T |, we define En(supx
c) =

∑|T |
i=0 Ei,n(supx

c)
as the expected support of x on class c on the first n transactions of
T , and Ei,n(supx

c) as the part of expected support of x on class
c with support of i on the first n transactions of T . We have the
following theorem.

THEOREM 1. Denoting P (x ⊆ ti) as pi for each transaction
ti ∈ T , we have

Ei,n(supx
c) = pn × Ei−1,n−1(supx

c)

+ (1− pn)× Ei,n−1(supx
c)

when cn 6= c, and

Ei,n(supx
c) = pn × Ei−1,n−1(supx

c + 1)

+ (1− pn)× Ei,n−1(supx
c)

when cn = c, where 1 ≤ i ≤ n ≤ |T |.

Ei,n(supx
c) = 0

for ∀n where i = 0, or where n < i.

PROOF. If x 6⊆ tn, we have Ei,n(supx
c) = Ei,n(supx

c)+(1−
pn)×Ei,n−1(supx

c) since both supx and supx
c in each possible

world remains the same. If x ⊆ tn, there exist two situations:
When cn 6= c, supxc in each possible world remains the same

while supx = supx+1 and we have Ei,n(supx
c) = Ei,n(supx

c)+
pn × Ei−1,n−1(supx

c).
When cn = c, supxc = supx

c+1 and supx = supx+1 in each
possible world. Hence we have Ei,n(supx

c) = Ei,n(supx
c) +

pn × Ei−1,n−1(supx
c + 1) similarly.

Thus, the theorem is proved.

Defining Pi,n as the probability of x having support of i on the
first n transactions of T , we have

Ei,n(supx
c) = pn × (Ei−1,n−1(supx

c + 1))

+ (1− pn)× Ei,n−1(supx
c)

= pn × (Ei−1,n−1(supx
c) + Pi−1,n−1)

+ (1− pn)× Ei,n−1(supx
c)

when cn = c, since we have:

Ei−1,n−1(supx
c + 1) = Ei−1,n−1(supx

c) + Pi−1,n−1

For computing Pi,n, we also introduce the following theorem.

THEOREM 2. Denoting P (x ⊆ ti) as pi for each transaction
ti ∈ T , we have

Pi,n = pn × Pi−1,n−1 + (1− pn)× Pi,n−1

, where 1 ≤ i ≤ n ≤ |T |.

Pi,n =

{
1 for n = 0

Pi,n−1 × (1− pn) for 1 ≤ n ≤ |T |

where i = 0.

Pi,n = 0

where n < i.

PROOF. The proof is similar to that of Theorem 1.

Now we could compute the expected confidence of itemset x on
class c, since E(confx

c) = E|T |(confx
c) =

∑|T |
i=0 Ei,|T |(confx

c).
The whole computation is divided into |T |+1 steps with Ei,|T |(confx

c)
= Ei,|T |(supx

c)/i (0 ≤ i ≤ |T |) computed in ith step. Figure 1
shows the computation process.

#Transaction / n

Support / i

0 1 |T|

0
1

|T|

...

...

,| |()c
i T xconfE

1,| | 1()c
i T xconfE − −

2

2

Computation in One Step Start of Next Step Explaination

1,| | ()c
i T xconfE −

| |

,| |
0

() ()
T

c c
x i T x

i

conf cE E onf
=

=∑
Figure 1: Computation Process of Expected Confidence

Finally, we prove the computation complexity of the expected
confidence E(confx

c) in terms of time and space in Theorem 3.

THEOREM 3. The computation of the expected confidence E(confx
c)

requires at most O(|T |2) time and at most O(|T |) space.

PROOF. The number of computation iterations is bounded by
the size of matrix depicted in Figure 1 containing

∑|T |
i=0 |T |+1− i

cells. Each cell represents a computation iteration performed in
O(1) time. Hence, the total computation requires O(|T |2) time.

Since only two rows in Figure 1 need to be reserved to complete
the computation, only O(|T |) space is required. Together with the
O(|T |) space to store pi = P (x ⊆ ti) for each ti ∈ T , totally
O(|T |) space is required to finish the computation.

Comparing with the complexity using the definition of expected
confidence, we could see that our computation strategy is very effi-
cient and reduces the time complexity significantly.

4.3 Upper Bound of Expected Confidence
We further develop a theorem to compute the upper bound of ex-

pected confidence. Given a class c, if the upper bound of a pattern
x is smaller than the maximum (expected) confidence of another
pattern y we have mined previously having x ⊂ y, the computa-
tion could be stopped since x would never be provided as a more
discriminative pattern with higher confidence value.

THEOREM 4. Given 1 ≤ i ≤ |T |,

boundi(confx
c) =

i−1∑
k=0

Ek,|T |(supx
c)× (

1

k
− 1

i
) +

E(supx
c)

i

is an upper bound of E(confx
c).

PROOF. For ∀i(1 ≤ i ≤ |T |), we have

E(confx
c) = E|T |(confx

c)

=

i−1∑
k=0

Ek,|T |(supx
c)

k
+

|T |∑
k=i

Ek,|T |(supx
c)

k

≤
i−1∑
k=0

Ek,|T |(supx
c)

k
+

|T |∑
k=i

Ek,|T |(supx
c)

i

=

i−1∑
k=0

Ek,|T |(supx
c)

k
+

|T |∑
k=0

Ek,|T |(supx
c)

i
−

i−1∑
k=0

Ek,|T |(supx
c)

i

=

i−1∑
k=0

Ek,|T |(supx
c)× (

1

k
− 1

i
) +

E(supx
c)

i

=boundi(confx
c)

Hence boundi(confx
c) is an upper bound of E(confx

c).

COROLLARY 1. For 1 ≤ i ≤ |T |, we have:

E(supx
c) = bound1(confx

c)

≥ · · · ≥ boundi(confx
c) ≥ · · ·

≥ bound|T |(confx
c) = E(confx

c)

PROOF. It is easy to get that bound1(confxc) = E(supx
c) and

bound|T |(confx
c) = E(confx

c) using the definition. Since

boundi−1(confx
c)− boundi(confx

c)

=(
1

i− 1
− 1

i
)× (E(supx

c)−
i−1∑
k=0

Ek,|T |(supx
c)) ≥ 0

for 1 < i ≤ |T |, the corollary is proved.

For ith step in computing Ei,|T |(confx
c), we could compute

the respective upper bound boundi(confx
c) using Ek,|T |(supx

c)
(0 ≤ k ≤ i − 1 < i ≤ |T |) which all have been computed
previously. Actually since

boundi(confx
c) = boundi−1(confx

c)

− (
1

i− 1
− 1

i
)× (E(supx

c)−
i−1∑
k=0

Ek,|T |(supx
c))

, we could compute boundi(confx
c) more efficiently with previ-

ous upper bound boundi−1(confx
c).

With the corollary, we know that the upper bound in the current
step would be smaller than the one in the previous step and is more
close to the value of expected confidence. Figure 2 illustrates the
computation process of expected confidence using upper bound.

We also provide an example on computation of upper bound
shown in Figure 3, conducted on one of the evaluation datasets.
(Details of the evaluation parameters could be found in Section 6.)

#Transaction / n

Support / i

0 1 |T|

0
1

|T|

...

...

,| |()c
i T xconfE

1,| |()c
i T xconfE −

1,| | 1()c
i T xconfE − −

2

2

Stop Condition:

SkippedComputation in One Step Start of Next Step Explaination

_()
cc cur db

i x maxbound conf conf≤

Figure 2: Computation Process of Expected Confidence using Up-
per Bound (confcur_db

max
c
: Maximum (expected) confidence in cur-

rent database on current class)

 0.1

 1

 10

 10 20 30 40 50 60 70 80 90 100

bo
un

d i
(c

on
f x

c)

Support / i

 boundi(confx
c)

 confmax
cur_dbc

 confx
c

boundi(confx
c) (Skipped)

 Stop when boundi(confx
c) <= confmax

cur_dbc

Figure 3: Example on Upper Bound Computation (car,
U10@1, supmin = 0.01, x = {vhigh@buying, 3@doors,
med@safety}, c = acc)

5. ALGORITHM DETAILS
Now we give the details of the whole algorithm of uHARMONY.

First we present the frequent itemset mining algorithm on uncertain
categorical data. Then we will discuss the instance covering tech-
nology using minimum cover probability. Finally, details of using
either SVM classifier or rule-based classifier are presented.

5.1 Mining Algorithm
The framework of our frequent itemset mining algorithm is sim-

ilar to that of HARMONY [21]. However, there also exist sig-
nificant differences. First, the infrequent pattern pruning technol-
ogy used in HARMONY is no longer applicable on uHARMONY.
Since on uncertain data even if the expected support is equal to
or higher than the minimum support, there still remain situations
where the itemset support is less than the minimum support. Sec-
ond, items on uncertain attributes need carefully consideration since
on uncertain attributes the pattern searching space could not shrink
when the current prefix pattern gets extended.

Algorithm 1 gives the details of our frequent itemset mining al-
gorithm in uHARMONY. Note that before running the algorithm,
we need to first sort the attributes to place all the certain attributes
before uncertain attributes. Hence when we traverse the attributes
for extending items, uncertain attributes which would not help shrink
the pattern searching space will be encountered at last. This helps to
speedup the algorithm. calcExpConf is the function of expected
confidence computation of current itemset x with upper bound com-
putation used. Function coverInstances is used to cover instances
with the current itemset, whose details will be provided later in
Section 5.2. The variable IS is used throughout the algorithm to
maintain all the discovered candidate itemsets as the output.

Algorithm 1: Itemset Mining Algorithm of uHARMONY
Function: mine(T, index, x, IS, {confmax

c|c ∈ domC})
Input: Current set of transactions, Current attribute index,

Current itemset pattern, Set of discovered candidate
itemsets through the algorithm, Set of maximum
confidences for each class 2

1 if Aindex 6∈ Au then
2 foreach c ∈ domC do
3 confx

c ← supx
c/supx;

4 else
5 foreach c ∈ domC do
6 confx

c ← calcExpConf(T, x, confmax
c);

7 coveredNum← 0;
8 foreach c ∈ domC do
9 if confxc > confmax

c then
10 coveredNumc ← coverInstances(T, x, IS);
11 confmax

c ← confx
c;

12 coveredNum← coveredNum+ coveredNumc;
13 if coveredNum > 0 then
14 IS ← IS ∪ {x};
15 for Aindex∗ ∈ {Aindex∗ |Aindex∗ ∈ A ∧ index < index∗}

do
16 for i ∈ domAindex∗ do
17 x∗ ← x ∪ {i@Aindex∗};
18 if supx∗ ≥ supmin then
19 if Aindex∗ 6∈ Au then
20 T ∗ ← {t|t ∈ T ∧ x∗ ⊆ t};
21 else
22 T ∗ ← T ;
23 mine(T ∗, index∗, x∗, IS, {confmax

c|c ∈
domC});

5.2 Instance Covering Strategy
HARMONY adopts a simple strategy for instance covering. It

tries to find one most discriminative covering pattern with the high-
est confidence for each instance. However, this strategy is not prac-
tical for uncertain data, since each itemset has a probability being
contained in the instance. If we just find the itemset with the highest
confidence for each instance, the probability of the instance being
covered could be very low.

In uHARMONY, we propose an instance covering strategy by
applying a threshold of minimum cover probability coverProbmin.
We try to assure that the probability of each instance not covered by
anyone itemset is less than 1 − coverProbmin. For each instance
t with class label c, we sort the covering itemsets in the descending
order with respect to confidence on class c. When a new itemset
is discovered we insert it into that list ISt = {x|x ∈ IS ∧ x ⊆
t} ⊆ IS. Then only the first k itemsets ISt[1, k] ⊆ ISt with∏

x∈ISt[1,k]
(1 − P (x ⊆ t)) < 1 − coverProbmin (1 ≤ k ≤

|ISt|) are selected to remain in the list. For each removed itemsets
in ISt − ISt[1, k], we decrease its total covered number on all in-
stances, and remove it from the candidate itemset set IS when its
total covered number reaches 0.

5.3 Classification Algorithm
The mined frequent itemsets could be used either as training fea-

tures of SVM classifier or as classification rules of rule-based clas-

2A new set is created each time to avoid overwriting previous values.

sifier. In this section, we will discuss the details of algorithms clas-
sifying instances using SVM classifier and rule-based classifier.

5.3.1 SVM Classifier
It is very simple to convert the mined patterns to training fea-

tures of SVM classifier. Each pattern is a feature with the feature
weight for an instance as the probability of the instance containing
the itemset. According to the accuracy evaluation, this approach
could provide 4% to 10% improvement on average in terms of clas-
sification accuracy comparing with two state-of-the-art algorithms.

5.3.2 Rule-based Classifier
To use the mined itemsets as classification rules, we adopt the

similar classifier construction algorithm of HARMONY. For each
test instance we just sum up the product of the confidence of each
itemset on each class and the probability of the instance containing
the itemset. The class with the largest value is the predicted class
of the instance. Although this algorithm is simple, it is effective in
classification. Accuracy evaluation shows that this algorithm out-
performs two state-of-the-art baselines too.

6. EVALUATION RESULTS
In this section, we will present the evaluation results of our algo-

rithm uHARMONY. Our algorithm is implemented in C#. All the
experiments were conducted on a computer with Intel Core Duo 2
E6550 CPU (2.33GHz) and 2GB memory installed.

6.1 Datasets
Due to the unavailability of public uncertain categorical datasets,

we conducted our evaluation on 30 public certain datasets from
UCI Machine Learning Repository 3, by converting them into un-
certain ones with varying uncertain degree (defined as the prob-
ability of each instance on each uncertain attribute taking values
other than the original value in the certain dataset) over different
attribute numbers. Details of the converting procedure on categori-
cal datasets could be found in [17]. Missing values appearing in the
uncertain attributes are converted to uncertain ones with the same
probability for each possible value. For some datasets containing
not only categorical but also continuous attributes, discretization
was applied using the entropy method proposed in [10] and adopted
in [15] using weka 4. Attributes containing unique identifier for
each instance and instances with missing class label have also been
removed. Detailed characteristics of datasets are listed in Table 3.
We could see that those datasets cover most of the common areas.

6.2 Classification Accuracy Evaluation
Now we give the evaluation results of our algorithm on classifi-

cation accuracy, comparing with two state-of-the-art classification
algorithms uRule [17] and DTU [16], which are extended from
the famous rule-based classifier Ripper [7] and decision tree clas-
sifier C4.5 [18]. To our best knowledge, the two algorithms are
the only available algorithms supporting uncertain categorical data.
For training and classifying of SVM, svmlight and svmmulticlass

are used for 2-class and multi-class situations, respectively. 5

3All the datasets and their detailed descriptions could be found at http:
//archive.ics.uci.edu/ml/index.html.
4The software is available at http://www.cs.waikato.ac.nz/
ml/weka/.
5They are available at http://www.cs.cornell.edu/people/
tj/svm%5Flight/. For svmmulticlass, the parameter of trade-off (“-
c”) is set to 1000.

http://archive.ics.uci.edu/ml/index.html
http://archive.ics.uci.edu/ml/index.html
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.cornell.edu/people/tj/svm%5Flight/
http://www.cs.cornell.edu/people/tj/svm%5Flight/

Dataset #Instance #Attribute #Class Area
australian 690 14 2 Financial
balance 635 4 3 Social
bands 539 38 2 Physical
breast 699 9 2 Life

bridges-v1 106 11 6 N/A
bridges-v2 106 10 6 N/A

car 1728 6 4 N/A
contraceptive 1473 9 3 Life

credit 690 15 2 Financial
echocardiogram 131 12 2 Life

flag 194 28 8 N/A
german 1000 19 2 Financial

heart 920 13 5 Life
hepatitis 155 19 2 Life

horse 368 27 2 Life
monks-1 556 6 2 N/A
monks-2 601 6 2 N/A
monks-3 554 6 2 N/A

mushroom 8124 22 2 Life
pima 768 8 2 Life

postoperative 90 8 3 Life
promoters 106 57 2 Life

spect 267 22 2 Life
survival 306 3 2 Life
ta_eval 151 5 3 N/A

tic-tac-toe 958 9 2 Game
vehicle 846 18 4 N/A
voting 435 16 2 Social
wine 178 13 3 Physical
zoo 101 16 7 Life

Table 3: Dataset Characteristics

6.2.1 Accuracy Comparison
Table 4 shows the evaluation results in terms of classification ac-

curacy, with 1, 2, or 4 uncertain attribute(s) using SVM classifier.
The upper part of the table is for uncertain degree of 10%, while
the lower part is for uncertain degree of 20%. Ux@y denotes the
datasets with y uncertain attribute(s) under uncertain degree x%;
N/Atime denotes that the algorithm did not finish in an acceptable
time; N/Amem denotes that the algorithm ran out of memory. All
the uncertain attributes are selected from all the non-class attributes
with the highest information gain values. All the experiments were
conducted using 10-fold cross validation. For the same dataset,
the same parameter values like supmin were used. Values in bold
stand for the highest accuracies for the corresponding datasets. We
could easily find that on most situations, our algorithm uHAR-
MONY outperforms the state-of-the-art algorithms DTU and uRule
significantly, with up to 28% improvement on dataset balance, and
on average 4% to 10% improvements on all the 30 datasets un-
der varying uncertain parameters. Besides, uHARMONY is also
more memory-efficient than both DTU and uRule, especially on
datasets whose uncertain attributes have many possible values. For
example, on dataset bands, DTU and uRule ran out of the memory
and could not finish properly in situations with more uncertain at-
tributes. Actually, the experiments with 8 uncertain attributes and
under uncertain degree of 40% show the same results.

Since uHARMONY supports the rule-based classifier besides
SVM classifier. We also conducted experiments on all the datasets
with four uncertain attributes under uncertain degree of 10%. From
Table 5 we could see that although uHARMONYrule (stands for
the rule-based uHARMONY classifier) could not outperform uHAR-
MONY (stands for the SVM-based uHARMONY classifier), it pro-
vides near 1% to 4% higher accuracy on average than DTU and

uRule, which validates the effectiveness of our algorithm. Exper-
imental results with other uncertain attributes and under other un-
certain degrees also show similar results.

Dataset uHARMONYrule DTU uRule supmin

australian 85.37 83.6232 84.3478 0.05
balance 89.3 56.32 62.88 0.1
bands 58.63 N/Amem N/Amem 0.25
breast 65.52 91.2732 94.5637 0.05

bridges-v1 62 59.434 55.6604 0.1
bridges-v2 62.2 64.1509 57.5472 0.1

car 77.72 70.0231 70.0231 0.01
contraceptive 47.59 50.1018 44.2634 0.01

credit 85.95 84.3478 74.3478 0.1
echocardiogram 93.29 92.3664 87.0229 0.1

flag 52.42 59.2784 44.8454 0.1
german 69.6 72.3 70.1 0.1

heart 56.64 53.0435 52.3913 0.25
hepatitis 82.52 80 79.3548 0.1

horse-colic 82.88 85.3261 N/Atime 0.1
monks-1 91.36 74.6403 70.6835 0.1
monks-2 65.72 65.7238 65.7238 0.1
monks-3 96.4 79.9639 68.0505 0.1

mushroom 97.45 100 99.9877 0.1
pima 65.11 65.1042 67.3177 0.25

postoperative 69.75 70 70 0.25
promoters 69 71.6981 61.3208 0.25

spect 80.19 79.0262 81.6479 0.1
survival 73.53 73.5294 72.549 0.1
ta_eval 45.04 48.3444 33.7748 0.01

tic-tac-toe 76.2 72.6514 81.524 0.05
vehicle 63.44 64.7754 N/Amem 0.01
voting 92.86 94.4828 94.9425 0.25
wine 51.11 42.1348 41.573 0.01
zoo 88.76 92.0792 89.1089 0.1

Average 73.2517 72.2670 69.4649

Table 5: Accuracy (in %) Comparison of U10@4 for uHarmony
using Rule-based Classifier

6.2.2 Sensitivity Test
We also evaluated uHARMONY on two popular datasets breast

and wine, under varying minimum supports and varying minimum
cover probabilities. Figure 4 shows the results with varying min-
imum supports. We could find that the supmin is crucial to the
accuracy. If a too high supmin is specified, few patterns could be
found. But a too low supmin could also hurt the accuracy. In our
experiments, supmin ranging from 0.01 to 0.25 were chosen. On
many datasets, a minimum support of 0.1 could provide the best re-
sults. However, the accuracy is insensitive to supmin under varying
uncertain degree and uncertain attribute number. This means we
just need to choose one proper supmin which will work well for
all the uncertain datasets derived from the same certain dataset. We
also tested the algorithm sensitivity against minimum cover prob-
ability. The results are shown in Figure 5. We see on average a
minimum cover probability of 90% could provide the best results
(Minimum cover probability of 90% is used during all this paper
if not specified explicitly.) Note that a minimum cover probability
of 0% works as selecting at most one pattern for each instance like
HARMONY.

6.3 Runtime Efficiency Evaluation

6.3.1 Efficiency Test
Figure 6 provides the evaluation results of algorithm efficiency

on six of the datasets in terms of both running time and memory us-

Dataset uHARMONY DTU uRule uHARMONY DTU uRule uHARMONY DTU uRule supmin

U10@1 U10@2 U10@4
australian 86.542 85.942 84.2029 86.109 86.087 85.2174 86.821 83.6232 84.3478 0.05
balance 90.577 65.12 69.92 90.736 66.08 71.2 90.736 56.32 62.88 0.1
bands 69.939 65.1206 N/Amem 69.939 N/Amem N/Amem 68.609 N/Amem N/Amem 0.25
breast 95.998 91.1302 93.7053 94.569 91.2732 93.5622 93.999 91.2732 94.5637 0.05

bridges-v1 65.068 51.8868 59.434 65.068 53.7736 60.3774 67.012 59.434 55.6604 0.1
bridges-v2 64.143 65.0943 60.3774 63.032 67.9245 55.6604 64.144 64.1509 57.5472 0.1

car 88.66 91.1458 85.5324 89.82 72.9745 69.0394 87.907 70.0231 70.0231 0.01
contraceptive 51.797 50.1018 44.2634 49.895 51.5954 43.9919 49.426 50.1018 44.2634 0.01

credit 85.517 87.3913 84.2029 85.517 86.9565 86.5217 86.382 84.3478 74.3478 0.1
echocardiogram 93.289 92.3664 92.3664 92.52 92.3664 90.8397 92.52 92.3664 87.0229 0.1

flag 65.667 67.0103 62.3711 62.544 65.9794 59.7938 59.868 59.2784 44.8454 0.1
german 72.8 69 70.6 72.7 70.7 70.5 72.9 72.3 70.1 0.1

heart 57.943 54.1304 50 58.166 54.2391 50.9783 57.854 53.0435 52.3913 0.25
hepatitis 83.772 79.3548 78.0645 83.772 79.3548 77.4194 79.264 80 79.3548 0.1

horse 86.108 85.3261 87.5 86.108 85.3261 87.2283 86.1 85.3261 N/Atime 0.1
monks-1 100 97.8417 95.6835 100 74.6403 97.1223 100 74.6403 70.6835 0.1
monks-2 69.554 65.7238 64.2263 72.187 65.7238 63.0616 76.7 65.7238 65.7238 0.1
monks-3 96.402 98.917 98.1949 96.402 79.9639 79.9639 96.402 79.9639 68.0505 0.1

mushroom 99.618 100 100 99.766 100 100 99.717 100 99.9877 0.1
pima 68.106 65.1042 68.099 68.106 65.1042 67.4479 68.106 65.1042 67.3177 0.25

postoperative 69.614 68.8889 68.8889 69.614 70 70 69.198 70 70 0.25
promoters 87.166 76.4151 71.6981 86 73.5849 69.8113 77.667 71.6981 61.3208 0.25

spect 85.846 79.7753 83.8951 86.956 79.7753 83.5206 85.474 79.0262 81.6479 0.1
survival 73.529 73.5294 70.2614 73.529 73.5294 70.915 73.529 73.5294 72.549 0.1
ta_eval 54.298 44.3709 40.3974 52.263 48.3444 34.4371 45.746 48.3444 33.7748 0.01

tic-tac-toe 100 85.6994 97.7035 100 78.81 96.6597 99.895 72.6514 81.524 0.05
vehicle 65.323 64.0662 N/Amem 65.441 64.0662 N/Amem 64.02 64.7754 N/Amem 0.01
voting 96.099 93.7931 91.954 94.475 93.5632 90.8046 95.406 94.4828 94.9425 0.25
wine 53.086 39.8876 43.2584 53.601 39.8876 39.3258 50.525 42.1348 41.573 0.01
zoo 93.954 92.0792 89.1089 92.074 90.099 90.099 93.045 92.0792 89.1089 0.1

Average 79.0138 74.8738 75.2111 78.6970 73.1629 73.4107 77.9657 72.2670 69.4649
U20@1 U20@2 U20@4

australian 85.384 84.4928 78.8406 85.535 84.058 80.5797 88.416 77.971 79.1304 0.05
balance 91.212 66.08 69.92 91.212 66.24 71.2 91.527 56.32 63.04 0.1
bands 69.939 65.1206 N/Amem 69.939 N/Amem N/Amem 69.73 N/Amem N/Amem 0.25
breast 94.71 91.2732 93.8484 94.853 91.2732 93.7053 94.287 90.9871 94.5637 0.05

bridges-v1 65.068 51.8868 59.434 65.068 53.7736 60.3774 65.532 60.3774 55.6604 0.1
bridges-v2 64.143 65.0943 60.3774 63.033 67.9245 55.6604 64.087 57.5472 55.6604 0.1

car 88.953 90.7986 81.25 88.26 70.0231 70.0231 82.413 70.0231 70.0231 0.01
contraceptive 51.525 50.9165 44.1276 50.506 50.9165 43.5166 49.422 47.0468 44.1276 0.01

credit 85.361 84.3478 80.7246 85.217 84.058 81.7391 86.959 83.3333 73.913 0.1
echocardiogram 93.289 92.3664 92.3664 92.52 86.2595 79.3893 92.52 77.8626 87.0229 0.1

flag 65.667 67.0103 63.4021 62.544 65.9794 59.7938 57.689 49.4845 40.2062 0.1
german 72.5 69.3 69.4 72.8 69.7 68.3 72.8 71.2 68.3 0.1

heart 56.965 54.1304 48.913 57.627 54.2391 50.8696 58.397 53.3696 50.4348 0.25
hepatitis 83.772 79.3548 78.0645 83.772 79.3548 77.4194 81.3 79.3548 79.3548 0.1

horse 86.108 85.3261 87.5 86.108 85.3261 87.5 86.633 85.3261 N/Atime 0.1
monks-1 100 95.5036 95.3237 100 74.6403 90.8273 100 74.6403 69.2446 0.1
monks-2 75.028 65.7238 64.7255 74.852 65.7238 63.0616 73.205 65.7238 65.7238 0.1
monks-3 96.402 98.917 97.8339 96.402 79.9639 79.9639 96.402 79.9639 70.5776 0.1

mushroom 99.79 100 100 99.74 100 100 99.975 100 100 0.1
pima 68.106 65.8854 68.099 68.106 65.1042 67.4479 68.106 65.1042 67.3177 0.25

postoperative 69.864 68.8889 68.8889 69.614 70 70 69.614 70 70 0.25
promoters 85.667 76.4151 71.6981 87 75.4717 70.7547 81.333 59.434 54.717 0.25

spect 85.489 80.8989 83.1461 85.859 80.8989 83.8951 84.762 75.6554 78.6517 0.1
survival 73.529 73.5294 70.5882 73.529 73.5294 70.915 73.529 73.5294 72.8758 0.1
ta_eval 52.965 44.3709 41.0596 48.298 43.7086 37.0861 43.798 39.7351 32.4503 0.01

tic-tac-toe 100 84.3424 98.1211 100 78.81 96.2422 98.747 72.8601 78.7056 0.05
vehicle 65.323 64.0662 N/Amem 65.441 64.0662 N/Amem 64.02 64.539 N/Amem 0.01
voting 94.258 91.7241 90.5747 94.708 93.3333 91.0345 95.174 91.954 89.1954 0.25
wine 53.641 39.8876 43.2584 53.602 39.8876 39.8876 51.635 42.1348 41.573 0.01
zoo 93.954 92.0792 88.1188 92.074 90.099 90.099 93.045 92.0792 89.1089 0.1

Average 78.9537 74.6577 74.6287 78.6073 72.5642 72.5460 77.8352 69.9157 68.2066

Table 4: Accuracy (in %) Comparison of U{10,20}@{1,2,4}

 94

 94.5

 95

 95.5

 96

 96.5

 97

1.25 2.5 5 10 20

A
cc

ur
ac

y
(in

 %
)

Minimum Support (in %)

(a) breast

 49

 50

 51

 52

 53

 54

0.25 0.5 1 2 4

A
cc

ur
ac

y
(in

 %
)

Minimum Support (in %)

(b) wine

Figure 4: Accuracy Evaluation of U10@1 w.r.t. Minimum Support

 94

 94.5

 95

 95.5

 96

 96.5

0 10 50 90 100

A
cc

ur
ac

y
(in

 %
)

Minimum Cover Prob. (in %)

(a) breast

 51

 51.5

 52

 52.5

 53

 53.5

0 10 50 90 100

A
cc

ur
ac

y
(in

 %
)

Minimum Cover Prob. (in %)

(b) wine

Figure 5: Accuracy Evaluation of U10@1 w.r.t. Minimum Cover
Prob.

age. supmin values are the same as those in Table 4. Note that the
running time includes both the classifier construction time and clas-
sifier classification time. For example for uHARMONY, it includes
the time of mining patterns, converting to SVM input, SVM train-
ing and SVM classifying. All values are measured on all 10-fold
cross validations. We could see that DTU is the fastest algorithm
in all cases . Note that for uHARMONY, SVM training and classi-
fying take a great amount of running time for more than half. Well
for memory usage, uHARMONY consumes almost the fewest and
the stablest in most cases, while uRule always consumes the most.
uRule even ran out of the available memory on several datasets.

uHarmony DTU uRule

 0.1

 1

 10

 100

 1000

breast car contraceptive heart pima wine

R
un

ni
ng

 T
im

e
(in

 s
ec

)

Dataset

(a) Running Time (in sec)

 10

 100

 1000

breast car contraceptive heart pima wine

M
em

or
y

U
se

 (
in

 M
B

)

Dataset

(b) Memory Use (in MB)

Figure 6: Classification Efficiency Evaluation of U10@1

6.3.2 Effectiveness of the Expected Confidence Up-
per Bound

We evaluated the effectiveness of the expected confidence up-
per bound. Figure 7 shows the results on two of the most popular
datasets, car and heart, either with the expected confidence upper
bound or without the upper bound. The effectiveness of adopting
the expected confidence upper bound could be seen easily.

With Expected Conf Bound Without Expected Conf Bound

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0.2 0.4 0.6 0.8 1 1.2

R
un

ni
ng

 T
im

e
(in

 s
ec

)

Minimum Support (in %)

(a) car

 10

 15

 20

 25

 30

 35

 40

 0.2 0.4 0.6 0.8 1 1.2

R
un

ni
ng

 T
im

e
(in

 s
ec

)

Minimum Support (in %)

(b) heart

Figure 7: Running Time Evaluation of U10@4

6.3.3 Scalability Test
Finally, we evaluated the scalability of our algorithm. Results in

terms of running time are listed in Figure 8. It is obvious that using
the expected confidence bound offers better efficiency in running
time. Figure 9 also shows the results in terms of memory usage.
We could see that the increase of memory usage is smaller than
10 MB even when the size of dataset increases 16 times. Hence,
our algorithm is also efficient in terms of memory usage. Note that
since using the upper bound on computation of expected confidence
and not using the upper bound consume nearly the same amount of
memory, only the results of using the upper bound are shown.

With Expected Conf Bound Without Expected Conf Bound

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 1 2 4 8 16

R
un

ni
ng

 T
im

e
(in

 s
ec

)

Dataset Duplication Ratio

(a) car (supmin = 0.01)

 0

 200

 400

 600

 800

 1000

 1 2 4 8 16

R
un

ni
ng

 T
im

e
(in

 s
ec

)

Dataset Duplication Ratio

(b) heart (supmin = 0.01)

Figure 8: Scalability Evaluation (U10@1, Running Time)

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16

M
em

or
y

U
se

 (
in

 M
B

)

Dataset Duplication Ratio

(a) car (supmin = 0.01)

 10

 15

 20

 25

 30

 35

 40

 1 2 4 8 16

M
em

or
y

U
se

 (
in

 M
B

)

Dataset Duplication Ratio

(b) heart (supmin = 0.01)

Figure 9: Scalability Evaluation (U10@1, Memory Usage)

7. CONCLUSIONS
In this paper we propose a novel algorithm to solve the clas-

sification problem on uncertain categorical data. To achieve both
high classification accuracy and efficiency, we try to mine frequent
patterns directly from uncertain data using expected confidence as
discrimination measure. The costly feature selection is avoided,
and effective method for calculation of expected confidence is also
devised. Empirical results show that our algorithm outperforms the
state-of-the-art algorithms significantly with 4% to 10% improve-
ments on average in terms of accuracy on 30 datasets under varying
uncertain degrees and uncertain attribute numbers.

8. ACKNOWLEDGMENTS
This work was supported in part by National Natural Science

Foundation of China under grant No. 60873171, National Basic
Research Program of China under Grant No. 2006CB303103, and
the Program for New Century Excellent Talents in University under
Grant No. NCET-07-0491, State Education Ministry of China.

9. REFERENCES
[1] C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent

pattern mining with uncertain data. In Proceedings of the
15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 29–38, Paris, France,
2009. ACM.

[2] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and
A. Züfle. Probabilistic frequent itemset mining in uncertain
databases. In Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, pages 119–128, Paris, France, 2009. ACM.

[3] H. Cheng, X. Yan, J. Han, and C.-W. Hsu. Discriminative
frequent pattern analysis for effective classification. In
Proceedings of the 23rd International Conference on Data
Engineering, pages 716–725, Istanbul, Turkey, 2007. IEEE.

[4] H. Cheng, X. Yan, J. Han, and P. S. Yu. Direct discriminative
pattern mining for effective classification. In Proceedings of
the 24th International Conference on Data Engineering,
pages 169–178, Cancún, México, 2008. IEEE.

[5] C. K. Chui and B. Kao. A decremental approach for mining
frequent itemsets from uncertain data. In Proceedings of the
12th Pacific-Asia Conference on Knowledge Discovery and
Data Mining, PAKDD 2008, pages 64–75, Osaka, Japan,
2008. Springer.

[6] C. K. Chui, B. Kao, and E. Hung. Mining frequent itemsets
from uncertain data. In Proceedings of the 11th Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
PAKDD 2007, pages 47–58, Nanjing, China, 2007. Springer.

[7] W. W. Cohen. Fast effective rule induction. In Proceedings of
the Twelfth International Conference on Machine Learning
(ICML 1995), pages 115–123, Tahoe City, California, USA,
1995.

[8] G. Cong, K.-L. Tan, A. K. H. Tung, and X. Xu. Mining top-k
covering rule groups for gene expression data. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, pages 670–681, Baltimore,
Maryland, USA, 2005. ACM.

[9] W. Fan, K. Zhang, H. Cheng, J. Gao, X. Yan, J. Han, P. S.
Yu, and O. Verscheure. Direct mining of discriminative and
essential frequent patterns via model-based search tree. In
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pages 230–238, Las Vegas, Nevada, USA, 2008. ACM.

[10] U. M. Fayyad and K. B. Irani. Multi-interval discretization of
continuous-valued attributes for classification learning. In
IJCAI-93, Proceedings of the 8th International Joint
Conference on Artificial Intelligence, pages 1022–1029,
Chambery, France, 1993.

[11] C. Gao and J. Wang. Efficient itemset generator discovery
over a stream sliding window. In Proceedings of the 18th
ACM Conference on Information and Knowledge
Management, CIKM 2009, pages 355–364, Hong Kong,
China, 2009. ACM.

[12] J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns
without candidate generation: A frequent-pattern tree
approach. Data Min. Knowl. Discov., 8(1):53–87, 2004.

[13] C. K.-S. Leung, C. L. Carmichael, and B. Hao. Efficient
mining of frequent patterns from uncertain data. In
Workshops Proceedings of the 7th IEEE International
Conference on Data Mining (ICDM 2007), pages 489–494,
Omaha, Nebraska, USA, 2007. IEEE Computer Society.

[14] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient
classification based on multiple class-association rules. In
Proceedings of the 2001 IEEE International Conference on
Data Mining, pages 369–376, San Jose, California, USA,
2001. IEEE Computer Society.

[15] B. Liu, W. Hsu, and Y. Ma. Integrating classification and
association rule mining. In Proceedings of the Fourteen ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 80–86, New York City, New York,
USA, 1998.

[16] B. Qin, Y. Xia, and F. Li. Dtu: A decision tree for uncertain
data. In Proceedings of the 13th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, PAKDD 2009,
pages 4–15, Bangkok, Thailand, 2009. Springer.

[17] B. Qin, Y. Xia, S. Prabhakar, and Y.-C. Tu. A rule-based
classification algorithm for uncertain data. In Proceedings of
the 25th International Conference on Data Engineering,
ICDE 2009, pages 1633–1640, Shanghai, China, 2009.
IEEE.

[18] J. R. Quinlan. C4.5: Programs for Machine Learning,
Morgan Kaufmann: 1 ed. 1993.

[19] J. R. Quinlan and R. M. Cameron-Jones. Foil: A midterm
report. In Machine Learning: ECML-93, European
Conference on Machine Learning, pages 3–20, Vienna,
Austria, 1993. Springer.

[20] S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee.
Decision trees for uncertain data. In Proceedings of the 25th
International Conference on Data Engineering, ICDE 2009,
pages 441–444, Shanghai, China, 2009. IEEE.

[21] J. Wang and G. Karypis. On mining instance-centric
classification rules. IEEE Trans. Knowl. Data Eng.,
18(11):1497–1511, 2006.

[22] X. Yin and J. Han. Cpar: Classification based on predictive
association rules. In Proceedings of the Third SIAM
International Conference on Data Mining, San Francisco,
CA, USA, 2003. SIAM.

