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Abstract—Multi-tenant data management is a form of Soft-
ware as a Service (SaaS), whereby a third party service provider
hosts databases as a service and provides its customers with
seamless mechanisms to create, store and access their databases
at the host site. One of the main problems in such a system, as
we shall discuss in this paper, is scalability, namely the ability
to serve an increasing number of tenants without too much
query performance degradation. A promising way to handle the
scalability issue is to consolidate tuples from different tenants
into the same shared tables. However, this approach introduces
two problems: 1) The shared tables are too sparse. 2) Indexing
on shared tables is not effective.
To resolve the problems, we propose a multi-tenant database

system called M-Store, which provides storage and indexing ser-
vices for multi-tenants. To improve the scalability of the system,
we develop two techniques in M-Store: Bitmap Interpreted Tuple
(BIT) and Multi-Separated Index (MSI). BIT is efficient in that
it does not store NULLs from unused attributes in the shared
tables and MSI provides flexibility since it only indexes each
tenant’s own data on frequently accessed attributes. We extended
MySQL based on our proposed design and conducted extensive
experiments. The experimental results show that our proposed
approach is a promising multi-tenancy storage and indexing
scheme which can be easily integrated into existing DBMS.

I. INTRODUCTION

Interest in Multi-tenant Database Systems has been in-
creasing in recent years[15], [16], [19], [6]. The multi-tenant
database system adopts the Software as a Service (SaaS)
model, whereby a service provider hosts a data center and
a configurable base schema designed for a specific business
application, e.g., Customer Relationship Management (CRM)
and delivers data management services to a number of busi-
nesses. Each business, called a tenant, subscribes to the service
by configuring the base schema and loading data to the
data center and interacts with the service through a stan-
dard method, e.g., Web Service. The ownership of database
applications and the maintenance costs are thus transferred
from the tenant to the service provider. Figure 1 shows the
high level overview of outsourcing databases as a service.
This model sharply contrasts with the traditional on-premise
model whereby a tenant buys a data center and applications
and operates them itself. Applications of multi-tenant database
include Customer Relationship Management(CRM), Human
Capital Management(HCM), Supplier Relationship Manage-
ment(SRM) and Business Intelligence (BI).

Fig. 1. High-level overview of generalized “outsourced databases as services”

The value of multi-tenancy is that it can help a service
provider catch “long tail” markets [1]. By consolidating ap-
plications and their associated data to a centrally-hosted data
center, the service provider amortizes the cost of hardware,
software and professional services to an amount of tenants it
serves and therefore significantly reduces per-tenant service
subscription fee by use of the economy of scale. This per-
tenant subscription fee reduction brings the service provider
entirely new potential customers in long tail markets that
are typically not targeted by traditional and possibly more
expensive on-premise solutions. As revealed in [1], [5], access
to long tail customers will open up a huge amount of revenue.
In terms of IDC’s estimation, the market of SaaS will reach
$14.5 billion in 2011 [14].

In addition to the great impact that it can have on the
software industry, providing database as a service also opens
up several research problems to the database community,
including security, contention for shared resources, and ex-
tensibility. These problems are well understood and have been
discussed in recent works [16], [19].

In this paper, we argue that the scalability issue, which
refers to the ability to serve an increasing number of tenants
without too much query performance degradation, should de-
serve more concern in the building of a multi-tenant database
system. The reason is simple. The core value of multi-tenancy
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is to catch long tail. This is achieved by consolidating data
from tenants to the hosted database to reduce the per-tenant
service cost. So, the service provider must ensure that the
database system is built to scale up well so that the per-
tenant subscription fee may continue to fall when more and
more tenants are taken on board. Unfortunately, recent practice
shows that consolidating too much data from different tenants
will definitely degrade query performance [9]. If performance
degradation is not tolerated, the tenant may not be willing to
subscribe to the service. Therefore, the problem is to develop
effective and efficient architecture and techniques to maximize
scalability while guaranteeing that performance degradation is
within tolerable bounds.

Basically, there are three approaches to building a multi-
tenant database system. The first approach is Independent
Databases and Independent Database Instances (IDII). In IDII,
the service provider runs independent database instances, e.g.,
MySQL or DB2 database processes to serve different tenants.
The tenant stores and queries data in its dedicated database.
Although this approach offers good data isolation and security,
scalability is rather poor since running independent database
instances wastes memory and CPU cycles. As an example, the
initialization of a new MySQL instance consumes 30M mem-
ory or so. Furthermore, maintenance cost is huge. Managing
different database instances requires the service provider to
configure parameters such as TCP/IP port and disk quote for
each database instance.

The second approach to building a multi-tenant database
is Independent Tables and Shared Database Instances (ITSI).
In ITSI, only one database instance is running and the in-
stance is shared among all tenants. Each tenant stores tuples
in its private tables whose schema is configured from the
base schema. All the private tables are finally stored in the
shared database. ITSI removes the huge maintenance cost
incurred by IDII. However, the number of private tables
grows linearly with the number of tenants. Therefore, its
scalability is limited by the number of tables that the database
system can handle, which is itself dependent on the available
memory. For example, MySQL 5.1.26 allocates 9K memory
for metadata of each table. Thus, 100,000 tables occupy 900M
memory. Furthermore, memory buffers are allocated in a per-
table manner, and therefore buffer space contention often
occurs among the tables. A recent work reports significant
performance degradation on a blade server when the number
of tables rises beyond 50,000 [9].

The third approach is Shared Tables and Shared Database
Instances (STSI). Using STSI, tenants not only share database
instances but also tables. The tenants store their tuples to the
shared tables by appending each tuple with a TenentID,
that indicates which tenant the tuple belongs to, and setting
unused attributes to NULL. Queries are reformulated to take
into account TenentID so that correct answers can be found.
Details of STSI will be presented in the following sections.
STSI can achieve the best scalability since the number of tables
is determined by the base schema and is therefore independent
of the number of tenants. However, it introduces two problems:

1) The shared tables are too sparse. In order to make the
base schema general, the service provider typically covers
each possible attribute that the tenant may use, rendering the
base schema has a huge number of attributes. On the other
hand, for a specific tenant, only a small subset of attributes is
actually used. Therefore, too many NULLs are stored in the
shared table. These NULLs waste disk space and harm query
performance. 2) Indexing on the shared tables is not effective.
This is because each tenant has its own configured attributes
and access patterns. It is unlikely that all the tenants need
to index on the same column. Indexing the tuples of all the
tenants is unnecessary in many cases.

In this paper, we propose a multi-tenant database system
called M-store. We build M-store as a storage engine for
MySQL to provide storage and indexing service for multiple
tenants. M-store adopts STSI to achieve excellent scalabil-
ity. To overcome the drawback of STSI, we develop two
techniques. The first one is Bitmap Interpreted Tuple (BIT).
Using BIT, only values from configured attributes are stored
in the shared table. NULLs from unused attributes are not
stored. Furthermore, a bitmap catalog which describes which
attributes are used and which are not is created and shared
by tuples from the same tenant. That bitmap catalog is also
used to reconstruct the tuple when the tuple is read from
the disk. In BIT, the overhead for compressing NULLs in
unused attributes is near 0. Moreover, the BIT scheme does not
undermine the performance of retrieving a particular attribute
in the compressed tuple. To solve the indexing problem, we
propose the Multi-Separated Index (MSI) scheme. Using MSI,
we do not build an index on the same attribute for all the
tenants. Instead, we build a separate index for each tenant. If
an attribute is configured and frequently accessed by a tenant,
an individual index is built on that attribute for the tuples that
belong to that tenant.

Our contributions are as follows:
• We propose a novel multi-tenancy storage technique BIT.

BIT is efficient in that it does not store NULLs from un-
used attributes in shared tables. Unlike alternative sparse
table storage techniques such as vertical schema [8] and
interpreted fields [10], BIT does not introduce overhead
for NULLs compression and tuples reconstruction.

• We propose the MSI indexing scheme. To the best of
our knowledge, this is the first indexing scheme on
shared multi-tenant tables. MSI indexes data in a per-
tenant manner. Each tenant only indexes its own data
on frequent accessed attributes. Unused and infrequent
accessed attributes are not indexed at all. Therefore, MSI
provides good flexibility and efficiency for a multi-tenant
database.

• We implemented BIT and MSI in M-store. M-store is
a pluggable storage engine for MySQL which offers
storage and indexing services for multi-tenant databases.
By doing this, we show that our proposed techniques are
ready for use and can be easily grafted into an existing
database management system.

• We conducted extensive experiments to evaluate the ef-
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ficiency and effectiveness of our proposed techniques.
The results show that our approach is a promising multi-
tenancy storage and indexing scheme.

The paper is organized as follows. Section II outlines the
multi-tenant database system and discusses three possible
solutions. Section III describes the proposed M-store. Section
IV empirically evaluates the efficiency of M-store. Section V
discusses related work, and is followed by conclusions and
future work in Section VI.

II. THE MULTI-TENANT DATABASE SYSTEM

A. Problem Settings
To provide database as a service, the service provider

maintains a base configurable schema S which models an
enterprise application such as CRM and ERP. The base schema
S = {T1, . . . , Tn} consists of a set of tables. Each table Ti

models an entity in the business, e.g., Employee, and consists
of C compulsory attributes and G configurable attributes.

To subscribe to the service, a tenant configures the base
schema by choosing the tables to be used and in each table the
configurable attributes that are appropriate for the application.
Compulsory attributes must be chosen. The service provider
may also provide certain extensibility to the tenants by al-
lowing them to add some attributes if the attributes are not
in the base schema. However, if the base schema is designed
properly, this case does not occur often. We do not consider
the extensibility issue in this paper. Discussion on that problem
may be found in [9].

After configuration, the main problem is to store and index
tuples in terms of the configured schema produced by the
tenants. There are three approaches to building a multi-tenant
database.

B. Independent Databases and Independent Database In-
stances (IDII)

The first approach to implementing a multi-tenant database
is Independent Databases and Independent Instances (IDII). In
this approach, tenants only share hardware (data center). The
service provider runs independent database instances to serve
independent tenants. Each tenant creates its own database and
stores tuples there by interacting with its dedicated database
instance. Figure 2 illustrates the architecture of IDII.

IDII is the simplest approach to implementing a multi-tenant
database. It is entirely built on top of a current DBMS without
any extension and it provides good data isolation and security.
However, IDII introduces huge maintenance cost. To manage
a variety of database instances, the service provider needs to
perform a lot of configuration work. For example, to run a new
MySQL instance, the DBA should provide a separate config-
uration file to indicate the data directory, network parameters,
performance tuning parameters, access control list, etc. The
DBA also needs to allocate disk space, memory, and network
bandwidth for a new instance. Furthermore, the scalability
of IDII is rather poor. The number of database instances
grows linearly with the number of tenants. 1,000 tenants cause
1,000 database instances. The database instance is a heavy

Fig. 2. Architecture of IDII

Fig. 3. Architecture of ITSI

weight OS process. The startup of a modern database instance
consumes tens of megabytes memory. Also, scheduling too
many database processes introduces huge overhead to the
operating system.

C. Independent Tables and Shared Database Instances (ITSI)
The second multi-tenancy architecture is Independent Tables

and Shared Instances (ITSI). In this approach, tenants not
only share hardware but also database instances. The ser-
vice provider maintains a large shared database and serves
all tenants. Each tenant loads its tuples to its own private
tables configured from the base schema and stores the private
tables into the shared database. Each private table name is
appended a TenantID to indicate who owns the table. As an
example, tenant 1’s private employee table reads Employee1.
Queries are also reformulated to recognize the modified table
names so that correct answers can be returned. Typically, this
reformulation is performed by a query router. Figure 3 depicts
the architecture of ITSI. Table I shows the private Employee
tables layout of three tenants.

ITSI provides better scalability than IDII and also reduces
the huge maintenance cost of managing different database
instances. However, the number of private tables in the shared
database grows linearly with the number of tenants. Therefore,
the scalability of ITSI is limited by the number of tables that
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TABLE I
ITSI PRIVATE TABLE LAYOUT

(a) Private Table of Tanent3

ENo EName EAge
053 Jerry 35
089 Jacky 28

(b) Private Table of Tanent21

ENo EName EPhone EOffice
023 Mary 98674520 Shanghai
077 Ball 22753408 Singapore

(c) Private Table of Tanent33

ENo EName EAge ESalary EOffice
131 Big 40 8000 London
088 Tom 36 6500 Tokyo

a database system can handle and is actually dependent on the
available memory. A state-of-the-art machine such as a blade
server can support up to 50,000 tables.

D. Shared Tables and Shared Database Instances (STSI)
The third multi-tenancy architecture is Shared Tables and

Shared Database Instances (STSI). In STSI, tenants not only
share a database but also tables. In the service setup phase,
the service provider initializes the shared database by creating
empty source tables according to the base schema. Each source
table, called a Shared Table (ST), is then shared among the
tenants. Each tenant stores its tuples in ST by appending each
tuple with a TenantID attribute and setting unused attributes
to NULLs. Table II shows the layout of a shared Employee
table which stores tuples from three tenants.

To retrieve tuples from ST, a query router is used to
reformulate queries to take TenentID into account. Figure 4
illustrates the architecture of STSI. As a query transformation
example, to retrieve tuples in the Employee table, the source
query issued by tenant 17 is as follows:

SELECT Name FROM Employee

The transformed query is:

SELECT Name From Employee WHERE TenentID=’17’

Using STSI, the service provider only maintains a single
database instance. The maintenance cost is therefore greatly
reduced. Moreover, the number of tables in the database is
determined by the base schema and is therefore independent
of the number of tenants. Compared with IDII and ITSI, STSI
provides the best scalability since its scalability is no longer
limited by the available memory.

However, STSI introduces two performance issues. First,
consolidating tuples from different tenants into the same ST
causes that ST to store too many NULLs. The schema of
ST is usually very wide, typically including hundreds of
attributes. This is because the service provider wants to cover
every possible attribute that the tenants may configure. For

Fig. 4. Architecture of STSI

example, the service provider often offers many phone number
attributes such as mobile phone number, office phone number
and home phone number to meet the variety needs of tenants
in storing contact information. For a tenant, it is less likely,
if not impossible, that all the configurable attributes will be
used. In typical cases, only a small subset of attributes is
actually chosen. Thus, many NULLs are produced. Although
commercial databases handle NULLs fairly efficiently, many
studies have shown that if the table is too sparse, the disk space
wastage and performance degradation are not negligible [10].
Second, fine-grained support for indexing is impossible. The
tenant must build an index on the same attribute altogether or
none of them can do it. This all-or-nothing limitation is not
acceptable in many cases since different tenants have different
indexing requirements.

So, the overall conclusion for STSI is that if the storage and
indexing problems can be solved properly, it is a promising
method for multi-tenant databases because of its excellent
scalability.

III. M-STORE

This section presents our proposed multi-tenant system, M-
store. M-store achieves excellent scalability by following the
STSI approach and consolidating tuples of different tenants
into the same shared tables. To overcome the drawback of
STSI, M-store adopts the proposed Bitmap Interpreted Tuple
(BIT) storage technique and Multi-Separated Indexing (MSI)
scheme. We present them in the following subsections.

A. Bitmap Interpreted Tuple Format
One of the problems introduced by STSI is that storing

tuples in a large wide shared table produces a number of
NULLs. These NULLs waste disk bandwidth and undermine
the efficiency of query processing. Existing methods that deal
with the sparse table such as Vertical Schema and Interpreted
Format either introduce much overhead in tuple reconstruction
or prevent the storage system from optimizing random ac-
cesses to locate a given attribute. To the best of our knowledge,
none of them is optimized for multi-tenant databases.
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TABLE II
STSI SHARED TABLE LAYOUT

TID ENo EName EAge EPhone ESalary EOffice
Tenant 3 053 Jerry 35 NULL NULL NULL
Tenant 3 089 Jacky 28 NULL NULL NULL
Tenant21 023 Mary NULL 98674520 NULL Shanghai
Tenant21 077 Ball NULL 22753408 NULL Singapore
Tenant33 131 Big 40 NULL 8000 London
Tenant33 088 Tom 36 NULL 6500 Tokyo

One of the properties of a multi-tenant database is that tuples
will have the same physical storage layout if they come from
the same tenant. For example, if a tenant configures the first
two attributes of the shared table T and leaves out the rest of
the other two attributes, then all the tuples from that tenant will
have a layout where the first two attributes have values and the
last two attributes are NULLs. Based on this observation, we
develop a Bitmap Interpreted Tuple Format (BIT) technique to
efficiently store and retrieve tuples for multi-tenants without
storing NULLs from unused attributes.

Our approach comprises two steps. First, a bitmap string is
constructed for each tenant that decodes which attributes are
used and which are not. Second, tuples are stored and retrieved
based on the bitmap string of each tenant. We describe each
step below.

In the first step, each tenant configures a table from the
base schema by issuing a CREATE CONFIGURE TABLE statement,
which is actually an extension of the standard CREATE TABLE

statement. As an example, tenant 17 configures an employee
table as shown below. We ignore the data type declaration in
the base schema for simplicity.

CREATE CONFIGURE TABLE
Employee(ENo,EName)
FROM BASE
Employee(ENo, EName, EPhone, EPost);

Next, a bitmap string is constructed in terms of the table
configuration statement. The length of the bitmap string is
equal to the number of attributes in the base source table and
positions corresponding to used and unused attributes are set
to 1 and 0 respectively. In the above example, the bitmap
string for tenant 17’s employee example is 1100. The bitmap
string is thereafter stored somewhere for later use. In our
implementation, bitmap strings of tenants are stored with the
table catalog information of the shared source table. When
the shared table (ST) is opened, the table catalog information
and bitmap strings are loaded into the memory together. This
in-memory strategy is possible in that even when the base
source table has 100 attributes, loading bitmap strings for 1000
tenants only incurs about 12KB memory overhead, which is
rather negligible. Figure 5 demonstrates our implementation
on MySQL. We extend the MySQL’s table catalog file, i.e.,
.frm file associated with the table created in MySQL, and
append the bitmap strings of the tenants at the end of the file
immediately following the original table catalog information
part.

In the second step, tuples are stored and retrieved according
to the bitmap strings. When a tenant performs a tuple insertion,
NULLs in attributes whose positions in the bitmap string
are marked as 0 are removed. The rest of the attributes in
the inserted tuple are compacted as a new tuple and finally
stored in the shared table. The physical layout of the new
compacted tuple is the same as the row-store layout used in
most current commercial database systems. It begins with a
tuple head which includes tuple-id and tuple length. Next is
null-bitmap and values in each attribute. Fixed-width attributes
are stored directly. Variable-width attributes are stored as
length-value pairs. The null-bitmap decodes which fields in
the configured attributes are null. We should not confuse
the nulls in the configured attributes with NULLs in unused
attributes. The nulls in configured attributes means the values
are missing while the NULLs produced by unused attributes
indicate the attributes are not configured by the tenant. Figure 6
summarizes the tuple insertion process.

To retrieve specific attributes in the tuple, the bitmap string
is also used. If all the configured attributes are of a fixed
width, the offset of each attribute can be efficiently computed
by counting the number of ones before the position of that
attribute in the bitmap string. In our implementation, if the
tuple is of a fixed width, the offset of each attribute is
computed when the bitmap string is loaded into memory. If a
variable-width attribute is involved, calculation of the offset of
attribute An requires addition of data-lengths of the prior n−1
attributes. The algorithm is the same one used in commercial
database systems, and we shall ignore the details here.

Compared with the alternative sparse table storage tech-
niques such as Interpreted Format and Vertical Schema, our
proposed technique BIT is specifically designed for supporting
multi-tenant databases. To store tuples from different tenants in
a wide base table, we only maintain a per-tenant bitmap string
whose length is fixed by the number of attributes in the base
schema. Therefore, the overhead for storing NULLs in unused
attributes per tuple is near 0. None of the aforementioned
techniques can give such a guarantee. Furthermore, if the
configured table is of a fixed width, our approach does not
degrade the performance of random access on the attributes.
This is a performance gain that cannot be achieved with the
Interpreted Format.

B. Multi-Separated Indexing
In a multi-tenant database, the shared table stores tuples

from a number of tenants. The data volume is huge. Therefore,

836836

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 28, 2009 at 10:35 from IEEE Xplore.  Restrictions apply. 



Header

tuple-

id

tuple-

length
bit m ap

Emp#1 Mary NULL 98365489 NULL NULL

Bitmap String:     111100

O riginal Tuple:

Remove U nconfigured N ulls

Layout in Shared Table:

Emp#1 Mary NULL 98365489

20 15 1101 Emp#1 Mary 98365489

Fig. 6. Process of Tuple Insertion in ST

A1 INT 4 ...

A2 VARCHAR 16 ...

... ... ... ...

An VARCHAR 16 ...

tenant1 011111...1

tenant2 100101...0

... ...

tenantn 110100...0

  table

c atalog

 attribute nam e        type              length             other

 bitm ap

 c atalog

tenant id                        bitm ap s tring

Fig. 5. Catalog of BIT

it is of vital importance to develop an efficient indexing
technique to retrieve tuples in the shared table.

In principle, one can build a big B+-tree on a given attribute
of the shared table to index tuples from all the tenants. We
call this approach the Big Index (BI). The BI approach has
the advantage that the index is shared among all tenants. As a
result, the memory buffers for index pages may be efficiently
utilized, especially for selection and range queries. In these
queries, the search path starts from the root to leaves. Buffering
the top index pages (pages towards the root) in the memory
will reduce the number of disk I/Os when multiple tenants
concurrently search the index. Unfortunately, index scan is
fairly inefficient. To step through its own keys, a common
operation for aggregate and join queries, a tenant needs to scan
the whole index file which is very time consuming because the
index has keys of all tenants. Furthermore, the BI approach
fails to provide sufficient flexibility for a multi-tenant database.
Although tenants consolidate their tuples into the same shared
tables, different tenants configure different attributes and will
have different access patterns. It is therefore impossible to
support a fine-grained index.

Instead of using one BI for each ST, in M-store, we propose
another indexing scheme called Multi-Separated Index (MSI).
Instead of building an index for all tenants, we build an index
for each tenant. If a hundred tenants want to index tuples
on an attribute, one hundred individual indexes are built for
these tenants. At first glance, MSI may not be efficient since
the number of indexes grows linearly with the number of
tenants and too many indexes may contend for the memory
buffer, thus slowing down the query. However, as we have
mentioned, different tenants configure different attributes and
have different access patterns on those attributes. Therefore,

given a particular attribute, only a fraction of tenants will build
an index on that attribute. So, in real applications, MSI does
not make the number of indexes explosive.

Compared to BI, MSI has several advantages. First, MSI is
flexible. Each tenant indexes its own tuples on the fly. We do
not enforce that all tenants have to build index on the same
attribute or none of them can do it. Second, index scan in
the MSI approach is efficient. To perform an index scan, each
tenant needs to scan only its own index file. This is unlike BI,
where all the tenants share the same index, causing a tenant to
scan the whole index even if the tenant only wants to retrieve
a small subset of keys that belong to it in the index.

At this point, we must note that MSI is different from view
indexing [17], [2]. View is dynamic and content based – a
tuple that is indexed is dropped when its index attribute value
does not satisfy the view. On the contrary, the number of tuples
indexed by an MSI index for a tenant over an attribute does
not change with respect to changes to attribute values. MSI
is also different from partial indexing scheme which builds
indexes on less than a complete column [20]. MSI builds an
index on a complete column. If a tenant builds an index on a
column, all tuples belonging to that tenant will be indexed no
matter whether the tuples qualify a partial filtering condition
or not. That is, each MSI behaves like a conventional index,
but over a subset of tuples that belong to a given tenant.

IV. EXPERIMENTS

In this section, we empirically evaluate the efficiency and
scalability of M-store through two main sets of experiments. In
the first set of experiments, we consider the scalability of the
storage module in M-store by measuring disk space usage as
the number of tenants increases. In the second set, we evaluate
the query performance of M-store through executing three
kinds of query workloads, namely simple queries, analysis
queries, and update queries. The original STSI is used as the
baseline in the experiments.

A. Benchmarking

It is of vital importance to use an appropriate benchmark to
evaluate multi-tenant database systems. Unfortunately, to the
best of our knowledge, there is no standard benchmark for this
task. Traditional benchmarks such as TPC-C [3] and TPC-H
[4] are not suitable for benchmarking multi-tenant database

837837

Authorized licensed use limited to: Tsinghua University Library. Downloaded on July 28, 2009 at 10:35 from IEEE Xplore.  Restrictions apply. 



systems. TPC-C and TPC-H are basically designed for single-
tenant database systems, and they lack an important feature
that a multi-tenant database must have, namely, the ability for
allowing the database schema to be configurable for different
tenants. Therefore, we develop our own DaaS (Database as a
Service) benchmark by following the general rules of TPC-C
and TPC-H.

Our DaaS benchmark comprises three modules: a config-
urable database base schema, a query workload generator, and
a worker. We describe them below.

We follow the logical database design of TPC-H to gen-
erate the configurable database base schema. Our benchmark
database comprises four tables. These tables are chosen out of
eight tables from the TPC-H database. They are: lineitem,
orders, part and customer. For each table, we extend
the number of attributes to 100 by appending attributes to
the original table schema, one of which is tid (tenant ID)
that denotes the tuple owner. The data type of extended
attributes, exclude tid whose data type is integer, is string.
The first two or three attributes in each table are marked as
compulsory attributes that each tenant must choose. The rest
of the other attributes are marked as configurable. The simpli-
fied customer table schema is given below for illustration
purpose. In this example, tid, c_custkey, and c_name
are compulsory attributes. The rest attributes, i.e., c_col1,
c_col2, and c_col3, are configurable.

customer(
tid, c custkey, c name,
c col1, c col2, c col3

)

We develop a tool called SGEN to generate private schemas
for each tenant. SGEN is configured by three parameters,
i.e., the number of tenants Nt, the average number of con-
figured attributes μ, and the derivation σ. To generate private
schemas for tenant Ti, SGEN randomly selects ni configurable
attributes in each table from the database and collects the
chosen attributes to form the final private database schema.
The number ni is a random number chosen from normal
distribution N (μ, σ). The process is repeated Nt times to
generate private table schemas for Nt tenants.

To populate the database, we use MDBGEN for data
generation. MDBGEN is essentially an extension of DBGEN
tool equipped with TPC-H. It actually uses the same code
of DBGEN to generate value for each attribute. The only
difference is that MDBGEN generates data for each tenant
by taking into account the private schema of that tenant. The
values in the extended attributes are generated by random
v-string algorithm used in DBGEN. The values in unused
attributes are outputted as NULLs.

Following TPC-C and TPC-H, we design and implement
a query workload generator to generate the query sets for
benchmark. Our query generator can generate three kinds of
query workloads:

• Simple Query: Randomly select a set of attributes of
tenants according to a simple filtering condition. An
example of such a query is as follows. Note that we

have associated the predicate on tid to locate the correct
answers for the given tenant when we generate queries.

SELECT c custkey, c name
FROM customer
WHERE customer.tid=100 AND

customer.c custkey>9000;
• Analysis Query: Run reporting queries which perform

join, aggregation, and/or grouping on the shared tables
of the tenants. An example is given as below.

SELECT max(o orderkey)
FROM orders, lineitem
WHERE lineitem.tid=100 AND

orders.tid=100 AND
o orderkey=l orderkey;

• Update Query: Insert and delete tuples of tenants to the
shared tables.

The last module in our benchmark is worker. It is concep-
tually equivalent to the driver in the TPC-H benchmark. The
worker submits queries to the multi-tenant database system
under test and measures and reports the execution time of
those queries. We run worker and the multi-tenant database
system in a “client/server” configuration. We place the worker
and the database system in different machines interconnected
by a network. The worker is written in Java and interacts
with the database system through standard JDBC interface.
It is designed to simulate concurrent accesses to the database
system from multiple tenants. The worker achieves this by
stimulating Ns database sessions to the database system con-
currently. Each database session is dedicated to perform query
streams of a fixed number of tenants.

B. Experimental Settings
We present the experimental settings in this section. We first

present settings for benchmark databases generation. Then, we
present hardware and software settings.

We generate private database schemas for tenants by run-
ning SGEN. For each tenant, we generate 4 sets of schemas
by setting μ to 5, 10, 20, 30 respectively and fixing σ = 2.
We finally generate 4 groups of schemas for 100, 400, 700,
1,000 tenants. These schemas are then used for evaluating
the scalability of storage and query processing under different
schema variabilities.

We run MDBGEN to generate data for benchmark databases
according to the resulting private schemas. For each tenant,
we generate 5,000 tuples for lineitem, 2,000 tuples for
orders, 1,500 tuples for customer and part. The raw
data disk space of 1,000 tenants is 9.23 GB under the setting
of μ = 30.

For the worker, we set the number of concurrent database
sessions Ns = 50. We also set each database session to serve
equal number of tenants. So, to perform query streams from
100 tenants, each database session is dedicated to run queries
from unique 2 tenants.

The worker and the database system are run on two different
machines. These two machines are connected by 1.0Gb/s
LAN. Each machine is equipped with a Intel Core2 Duo CPU
and 4GB memory.
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We evaluate two kinds of multi-tenant database systems.
One is STSI, and the other is M-store. We implement the STSI
on top of MySQL 5.1.26. We choose MyISAM as the underline
storage engine for the storage and indexing components of
STSI. MyISAM is a known and proven as a popular storage
engine for highly scalable Web applications and is the default
storage engine of MySQL. BI is used as the indexing scheme
of STSI.

We implement M-store as a custom plug-in storage engine
of MySQL so that the two systems, i.e., STSI and M-store,
can be compared under the same database server. To create a
shared customer table in MySQL with M-store engine, one
can issue following statement. We use MSI indexing scheme
in M-store.

CREATE TABLE customer(
tid, c custkey, c name,
c col1, c col2, c col3

) engine=mstore;

As for the server performance tuning parameters such as
block size, memory buffer size, we use the default settings of
MySQL.

Following the guideline of TPC-H benchmark, the experi-
ment is conducted as an execution of the load test followed
by the performance test. In the load test, we populate the
database with generated data and study the scalability of the
storage module, measured by the disk usage, as the number of
tenants increases under different schema variability settings. In
the performance test, we evaluate the query performance with
three kinds of query workloads.

C. Scalability of Storage
Figure 7 depicts the disk space usage of M-store and STSI

in different settings. It can be clearly seen that M-store
outperforms STSI in terms of storage requirement in all the
experiments. For a very sparse setting, i.e., Figure 7(a), M-
store only uses 30% storage space of STSI to store the same
number of tuples. The reason is as follows. In this setting, the
average number of attributes each tenant configures is 5, i.e.,
μ = 5, but the total number of attributes in the base table
is 100. Therefore, STSI consumes large disk space to store
NULLs in the tuples. M-store, on the other hand, does not
store these NULLs. So it uses little disk space. As schema
sparsity decreases, the space usage gap between M-store and
STSI decreases gradually. However, even if 30% attributes are
used on average, i.e., Figure 7(d), M-store still outperforms
STSI by reducing 20% disk space.

D. Performance of Simple Queries
In this experiment, we test the query performance of M-

store and STSI under simple query workloads. Particularly,
we are interested in the performance comparison of indexing
techniques employed in M-store and STSI. Simple queries are
typical OLTP workloads. It is well known that appropriate
indexing technique can speedup such queries.

To conduct the experiment, we built indexes on the DaaS
benchmark databases. We first built a primary index on tid

of each shared table. This index is built for efficient table
scan for a specific tenant, namely speedup query that retrieve
all tuples belonged to that tenant. Then, we built indexes on
seven randomly selected attributes. Each index is a compound
index of that attribute and tenant ID. For example, the index
we built on customer is tid and c custkey. For STSI,
all tuples in the shared table are indexed no matter whether
the tuple owner configured attributes in the compound index.
For M-store, different tenant has different index structures. If
a tenant does not configure an attribute in a compound index,
the index structure belonged to that tenant is empty, namely
no tuples from that tenant will be indexed.

The query processing of STSI is simple. The query opti-
mizer just chooses an appropriate index, if available, and then
processes the query. The MySQL query optimizer performs a
fairly good job in this task. We use it for STSI directly.

For M-store, query processing is a little more complicated.
In M-store, even though the index is built on the shared table,
different tenants do not share the same indexing structure.
Instead, they have their own indexing structure. So, it is im-
portant to route the queries to the correct indexing structures.
The MySQL query optimizer is not able to handle this new
task since it has not been designed for multi-tenant databases.
In our implementation, we use a workaround to solve the
problem, and we illustrate how it works with a concrete
example below.

Suppose we want to build an index I on
(tid,c custkey) of the shared customer table.
We first issue a CREATE INDEX statement on customer
as we do for STSI. This statement creates an empty index
tree T on the given attributes. We actually insert a key, say
(20, 12300), to the index. Instead of inserting that key to
T , we insert the key to T20 which is an index tree built for
tenant 20. During query processing, if the query contains filter
conditions on (tid,c custkey), we manually reformulate
the query to force the query optimizer to use the index I
even if it is empty. This is done by adding a FORCE hint in
the original select statement. More information may be found
in the MySQL manual, and we omit the details here. When
the query is actually executed, MySQL will pass the name
of index tree, i.e., I and the search key to the index search
module of M-store. We then extract the tenant ID information
from the search key and route the query to the proper index
tree. This workaround helps save development work on
modifying the MySQL query optimizer and it is sufficient for
evaluating the idea. In the next version of M-store, we will
modify the MySQL query optimizer to select the right index
automatically and remove the workaround.

We finally use the workload generator to generate 5,000
simple queries and assign these queries to tenants. Figure 8
plots the average response time collected by the worker
module. The experiment is repeated six times to reduce the
software and hardware impact. For each run, we restart the
database server machine and client machine so that memory
buffers are flushed.

From Figure 8, we can see that the scalability of M-store
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 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

100 400 700 1000

R
es

po
ns

e 
Ti

m
e 

(S
ec

)

# of Tenants

STSI
Mstore

(a) μ = 5

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

100 400 700 1000

R
es

po
ns

e 
Ti

m
e 

(S
ec

)

# of Tenants

STSI
Mstore

(b) μ = 10

 5

 10

 15

 20

 25

 30

100 400 700 1000

R
es

po
ns

e 
Ti

m
e 

(S
ec

)

# of Tenants

STSI
Mstore

(c) μ = 20

 5

 10

 15

 20

 25

 30

100 400 700 1000

R
es

po
ns

e 
Ti

m
e 

(S
ec

)

# of Tenants

STSI
Mstore

(d) μ = 30

Fig. 8. Results for simple queries performance

is quite good. In spite of schema variability, the simple query performance of M-store does not degrade much as the number
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of tenants grows from 100 to 1,000. On the other hand,
the query performance of STSI degrades sharply when the
number of tenants increases. M-store outperforms STSI for
two reasons. First, compared to STSI, M-store uses less space
to store the same number of tuples. That is to say, given a
query, M-store uses fewer disk I/Os to load the answer tuples
of that query to memory than STSI. This feature particularly
saves times when the database server performs a table scan
to retrieve all tuples belonging to a given tenant. Second, in
STSI, all the tenants share the same B+-tree index that is
built on the attributes of the shared table. As more and more
tenants load tuples into the database, more and more keys are
inserted into the shared B+-tree. Thus, the B+-tree becomes
taller and taller. The index lookup becomes inefficient since
every index lookup goes from the root to the leaves. In contrast
to STSI, M-store builds a separate index for each tenant.
The height of each index tree is entirely determined by the
number of tuples belonging to that tenant. Thus, index lookup
performance does not suffer from the increasing number of
tenants. However, too many index trees increase the number
of random disk I/Os when the database server loads index
pages to memory. This is why the response times of M-store
also increase as more and more tenants issue queries. In our
experiments, this performance penalty is not great. We will
use a larger benchmark in the future and study whether this
argument still holds with hundreds of thousands of tenants.

E. Performance of Analysis Queries
In this experiment, we run 2,000 analysis queries on M-store

and STSI. These queries are generated from 4 reporting query
templates. Each query template contains join, aggregation and
grouping on the shared tables. The attribute in join condition
and aggregation is chosen from the indexed columns. Other
settings are the same with simple query experiments.

Figure 9 shows the average execution time of the benchmark
analysis queries. It can be seen from the figure that there is
a clear performance gap between M-store and STSI. Further
analysis on query plans reveals the cause of the performance
gap. MySQL only supports the nested loop join algorithm. To
perform join query R �� S, MySQL uses the tid index to
retrieve tuples in R belonging to the given tenant and then
uses another index to join tuples with S by index lookup.
Compared to STSI, M-store is more efficient in performing
table scan and index lookup since disk space is smaller and
index trees are shorter. So, M-store outperforms STSI.

F. Performance of Updates
In the final experiment, we randomly generate 1,000 in-

sertions and 1,000 deletions using a workload generator and
evaluate the update performance of M-store and STSI.

Figure 10 depicts the average execution time. In all settings,
M-store performs very well. On average, M-store performs
three to five folds faster than STSI when 1,000 tenants concur-
rently insert and delete tuples from the database. This is mainly
because M-store adopts the MSI indexing scheme. By building
a separate index for each tenant, there is no need to assign

and release locks between tenants when they concurrently
insert and delete tuples from the database. Therefore, the
overhead for concurrent control management is minimized.
Furthermore, the disk I/O cost of each insertion and deletion
is mainly determined by the number of tuples belonging to
the tenant. The cost is not sensitive to number of tenants.
Therefore, as we can see in Figure 10, the average execution
time of M-store does not grow much when the number of
tenants increases. In contrast, STSI follows the single shared
indexing scheme. As the number of tenants grows, more
overhead on concurrent management is introduced. Moreover,
for a single insertion and deletion, the disk I/O cost also grows
with the number of tenants. So, the performance gap between
M-store and STSI becomes larger and larger in Figure 10.

V. RELATED WORK

The work that are related to ours can be classified into
two categories: a) outsourcing database as a service, and b)
extending relational DBMS to support sparse datasets.

Research in category a) focuses on designing a system
which provides database as a service. In [15], a system called
NetDB2 was proposed to provide mechanisms for organiza-
tions to create and access their databases at the host site
managed by a third party service provider. This work focuses
on solving data security issues. In [19] and [16], further study
was carried out on the assurance and security issues in query
execution and indexing. These works are complementary to
ours in that they focus on security issues while we study the
scalability issue.

In [9], the authors present schema-mapping techniques for
multi-tenant databases. This work is closely related to ours, as
it also presents ITSI and STSI architectures for multi-tenant
databases. Our work was independently started in the late
2007, and the fundamental difference between their proposal
and ours is the motivation. They focus on an extension of
STSI that provides extensibility for multi-tenant databases.
Particularly, they propose a chunk folding technique which
uses chunk tables to store data in extension attributes. Our
proposal, on the other hand, focuses on improving the storage
scalability and query performance of STSI by designing new
storage and indexing schemes. In the future work, we are
interested in whether our storage scheme can be enhanced to
support extensibility but without the performance overhead of
tuple reconstruction incurred by chunk folding.

In [21] and [13], the authors propose PNUTS, a hosted data
serving platform which is designed for various Yahoo’s web
applications. The proposal focuses on providing low latency
for concurrent requests including updates and queries by use
of massive servers. They do not consider scalability or the
maximum applications that each server can support.

BigTable [11] is developed and deployed by Google as a
structured data storage infrastructure for different Google’s
products. The design and implementation of BigTable is
different from ours. To scale up the system to thousands of
machines and serve as many projects as possible, BigTable
employs a simple data model that presents data as a sorted
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Fig. 9. Results for analysis queries performance
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map in which each value is an uninterpreted string. BigTable
enforces the user, by writing specific programs, to store and
retrieve those uninterpreted strings. This data model is not
suitable to our applications. It burdens a high development
cost on the customer and may prevent transferring ownership
and maintenance cost of applications from the customer to the
service provider. As we argued in this paper, this transfer is
an effective way for the service provider to reduce the cost
and catch long tail markets.

In [18], the authors present SHAROES, a system which
delivers raw storage as a service over a network. The proposal
focuses on delivering a secure raw storage service without
consideration on the data model and indexing. Our pro-
posal, on the other hand, provides a richer database facilities,
including a multi-tenant configurable relational data model
and indexing. Amazon’s S3 and SimpleDB services, and
Microsoft’s CloudDB project are the systems which are also
related to our work. However, little information about them
has been published so far. Therefore, we cannot compare the
architecture and techniques of these systems to ours.

Research in category b) focuses on extending relational
DBMS to support sparse datasets where relations exhibit many
attributes that are NULL for many tuples. These works are
related to ours. In our system implementation, we also inves-
tigate effective ways to store a large number of NULL values.
The work in [10], [12] proposes using interpreted format to
store sparse datasets in relational DBMS. A similar method is
used in our previous work [22] which stores user contributed
tags in a sparse table. Compared to these work, our proposed
BIT technique is explicitly designed for supporting multi-
tenant databases. Using BIT, the space overhead for storing
NULLs in unused attributes is near to 0. This guarantee cannot
be achieved by these work. The work in [7] discusses effective
techniques for compressing NULL values in a column-oriented
database system. While our design is influenced by this work,
our system is targeted at developing multi-tenancy database
service support on top of traditional column-oriented database
systems.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed and developed the M-
store system which provides storage and indexing service
for a multi-tenant database system. The innovative techniques
embodied in M-store include:

• A Bitmap Interpreted Tuple storage format which is op-
timized for multi-tenant configurable shared table layout
and does not store NULLs in unused attributes.

• A Multi-Separated Indexing scheme that provides each
tenant fine granularity control on index management and
efficient index lookup.

Our experiments on a 9.23 GB database benchmark show
that Bitmap Interpreted Tuple significantly reduces disk space
usage and Multi-Separated Indexing considerably improves
index lookup speed as compared to the STSI approach.

In our future work, we intend to extend M-store to support
extensibility. In our current implementation, we assume the

number of attributes in the base schema is fixed. However, as
presented in [9], in certain applications, the service provider
may add attributes to the base schema to meet the specific
purposes of tenants. We will study whether an extension to M-
store can support that requirement. Another direction is query
processing. Currently, we manually activate the optimizer to
use the right index. As a next step, we will study how to get the
optimizer to generate best query plans with Multi-Separated
Index automatically.
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