

Database Research Group

Search-As-You-Type in Forms:

Leveraging the Usability and the Functionality of Search Paradigm in Relational Databases

Hao Wu

Supervised by Prof. Lizhu Zhou

Database Research Group, Tsinghua University

VLDB PhD Workshop - Sept. 13, Singapore

Motivation Problem Statement Challenges Initial Achievements Conclusions

Problem Statement Challenges Initial Achievements Conclusions

- Relational databases are widely used.
- There are many search paradigms:
 - Structured Query Language (SQL)
 - Keyword Search (KS)
 - Query-By-Example (QBE)
- Different search paradigms are needed by different users.

#1: SQL is complex.

SELECT *

Author A, Autor_Paper AP, Paper P FROM WHERE title **LIKE** 'keyword' AND title **LIKE** 'search' AND authors **LIKE** 'q%' AND A.id = AP.aid AND P.id AP.pid =

#2: Traditional keyword search is imprecise.

keyword search g

Title? Conf. name? Author name?

#3: Form is awkward.

Search for People & Departments [Basic Search]			
Search Group	Faculty, Staff, Students &	Departments -	
First Name/Nickname		Starts With -	
Last Name		Starts With -	
E-mail		Starts With -	
UCInetID		Starts With -	
Department		Starts With -	
Telephone			
	Search Clear Form		

UCI Directory: http://directory.uci.edu/index.php?form_type=advanced_search

#4: The "Search" button is not convenient.

Keyword Search Form-Style Interface +Search-as-you-type +Seaform

Motivation
 Problem Statement
 Challenges
 Initial Achievements
 Conclusions

Challenges Initial Achievements Conclusions

- Data:
 - Single relational table.
 - Several searchable attributes.

ID	Title	Conf.	Author
1	xml database	VLDB	albert
2	xml database	SIGMOD	bob
3	xml search	VLDB	albert
4	xml security	VLDB	alice
5	rdbms	SIGMOD	charlie

- Query:
 - A set of keywords (prefixes) split by fields.
 - A focus indicator.

- Results:
 - Global results: corresponding tuples.
 - Local results: corresponding attribute values.
 - Aggregations.

Motivation
 Problem Statement
 Challenges
 Initial Achievements
 Conclusions

Motivation
 Problem Statement
 <u>Challenges</u>
 Initial Achievements
 Conclusions

Challenges: Search-As-You-Type

- Prefix matching:
 - E.g. al → albert, alice, ...
 Trie structure w/ cache.
- Fast response:
 - Synchronization of local results and global results yields heavy computational cost.

Φ

On-demand synchronization and dual-list trie.

Challenges: Error Tolerance

- Misplacing of keywords:
 - E.g. input "albert" into the Title input box.
 Automatic query refinement (given a query, how can we modify it to obtain more results?)
 Large search space; rely on precise estimation and probabilistic model.

• Fuzzy matching:

 E.g. input "albrt" instead of "albert".
 Edit-distance computation on trie structure.
 Ranking issue of local results: should local results be sorted by editdistance, or by aggregation values?

Challenges: Scalability

- Handle large-scale databases:
 - There are large number of tuples.

Top-k algorithm
 Precise aggregation is impossible in this case.
 Using RDBMS itself
 Index structure should be redesigned for DBMS; performance issues.

• Handle multiple tables:

 Data are regularized to several tables.
 Generalize the single-table local-global computation and reduce onthe-fly joins using pre-joined tables.
 It is hard to determine which tables are the most necessary to pre-join; extra storage cost. Motivation
 Problem Statement
 Challenges
 Initial Achievements
 Conclusions

Motivation
 Problem Statement
 Challenges

Initial Achievements

Conclusions

Initial Achievements

 $\leftrightarrow \rightarrow$

Seaform-DBLP

Features:

- Single table. ۲
- Prefix matching. ٠
- Average response time ۲ is less than 30 ms.

Limitations:

- Does not tolerate errors. ۲
- Non-top-k, i.e. it returns all matching results.
- Memory-resident. ۲

Seaform DBLP (beta) × +				
🗲 🔿 🕑 🚖 http://tastier.cs.tsinghua.edu.cn/seaform/dblp/#title=keyword%20search&author1=g&auth 🕨 🛞 🔋 🥝 🚺 📾 🗈 🖉				
	1 - 20 of 76 : 0.02 sec. Page Up / Down			
Search 1.4 million CS publications in real time with a form-style user interface.	Finding and ranking compact connected trees for effective keyword proximity search in XML documents. Jianhua Feng; Guoliang Li; Jianyong Wang; Lizhu Zhou Inf. Syst. 35(2): 186-203 (2010)			
Title: keyword search	Electronic Edition - BibTeX - Search by Google Scholar™			
Author: g and Conf./J.: Year:	Searching RDF Graphs with SPARQL and Keywords. Shady Elbassuoni; Maya Ramanath; Ralf Schenkel;			
Guoliang Li14Rémi Gilleron3Ashish Goel3Lin Guo3Luis Gravano3Ning Gao2Jihong Guan2Konstantin Golenberg2Georgia Koutrika2	Gerhard Weikum IEEE Data Eng. Bull. 33(1): 16-24 (2010) Electronic Edition - BibTeX - Search by Google Scholar™ Enhancing Keyword Search in Relational Databases Using Nearly Duplicate Records. Xiaochun Yang; Bin Wang; Guoren Wang; Ge Yu IEEE Data Eng. Bull. 33(1): 60-66 (2010) Electronic Edition - BibTeX - Search by Google Scholar™ k Keyword Search in Relational Databases. Yanwei Xu; Yoshiharu Ishikawa; Jihong Guan WAIM 2010: 755-767 Electronic Edition - BibTeX - Search by Google Scholar™			
Hector Garcia-Molina 2 Basilios Gatos 2	Automatically incorporating new sources in keyword search-based data integration. Partha Pratim Talukdar; Zachary G. Ives; Fernando			

Demonstrations:

Sept. 15, Wednesday 5 14:00 to 15:30

Motivation
 Problem Statement
 Challenges
 Initial Achievements
 Conclusions

Motivation
 Problem Statement
 Challenges
 Initial Achievements
 Conclusions

Conclusions

- Search-as-you-type with form is a good choice to balance the usability and functionality.
- There are still many problems to solve:
 - More effective index other than *trie* + *inverted lists*.
 - Support error tolerance.
 - Native DBMS support.
 - Top-k algorithms.
 - Pre-join (materialize) tables.

•

Thanks

http://tastier.cs.thu.edu.cn/seaform/

My homepage: http://dbgroup.cs.thu.edu.cn/wuhao/